CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation

Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, Chenfanfu Jiang

We present two new approaches for animating dynamic fracture involving large elastoplastic deformation. In contrast to traditional mesh-based tech-
niques, where sharp discontinuity is introduced to split the continuum at crack surfaces, our methods are based on Continuum Damage Mechanics
(CDM) with a variational energy-based formulation for crack evolution. Our first approach formulates the resulting dynamic material damage evolution with a Ginzburg-Landau type phase-field equation and discretizes it with the Material Point Method (MPM), resulting in a coupled momentum/damage solver rooted in phase field fracture: PFF-MPM. Although our PFF-MPM approach achieves convincing fracture with or without plasticity, we also introduce a return mapping algorithm that can be analytically solved for a wide range of general non-associated plasticity models, achieving more than two times speedup over traditional iterative approaches. To demonstrate the efficacy of the algorithm, we also develop a Non-Associated Cam-Clay (NACC) plasticity model with a novel fracture-friendly hardening scheme.Our NACC plasticity paired with traditional MPM composes a second approach to dynamic fracture, as it produces a breadth of organic, brittle material fracture effects on its own. Though NACC and PFF can be combined, we focus on exploring their material effects separately. Both methods can be easily integrated into any existing MPM solver, enabling the simulation of various fracturing materials with extremely high visual fidelity while requiring little additional computational overhead.

CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation

Anisotropic elasticity for inversion-safety and element rehabilitation

Ted Kim, Fernando de Goes, Hayley Iben

We present an analysis of anisotropic hyperelasticity, specifically transverse isotropy, that obtains closed-form expressions for the eigendecompositions of many common energies. We then use these to build fast and concise Newton implementations. We leverage our analysis in two separate applications. First, we show that existing anisotropic energies are not inversion-safe, and contain spurious stable states under large deformation. We then propose a new anisotropic strain invariant that enables the formulation of a novel, robust, and inversion-safe energy. The new energy fits completely within our analysis, so closed-form expressions are obtained for its eigensystem as well. Secondly, we use our analysis to rehabilitate badly-conditioned finite elements. Using this method, we can robustly simulate large deformations even when a mesh contains degenerate, zero-volume elements. We accomplish this by swapping the badly-behaved isotropic direction with a well-behaved anisotropic term. We validate our approach on a variety of examples.

Anisotropic elasticity for inversion-safety and element rehabilitation

SIGGRAPH 2019

A Geometrically Consistent Viscous Fluid Solver with Two-Way Fluid-Solid Coupling

Tetsuya Takahashi, Ming C. Lin.

We present a grid-based fluid solver for simulating viscous materials and their interactions with solid objects. Our method formulates the implicit viscosity integration as a minimization problem with consistently estimated volume fractions to account for the sub-grid details of free surfaces and solid boundaries. To handle the interplay between fluids and solid objects with viscosity forces, we also formulate the two-way fluid-solid coupling as a unified minimization problem based on the variational principle, which naturally enforces the boundary conditions. Our formulation leads to a symmetric positive definite linear system with a sparse matrix regardless of the monolithically coupled solid objects. Additionally, we present a position-correction method using density constraints to enforce the uniform distributions of fluid particles and thus prevent the loss of fluid volumes. We demonstrate the effectiveness of our method in a wide range of viscous fluid scenarios.

A Geometrically Consistent Viscous Fluid Solver with Two-Way Fluid-Solid Coupling

Efficient block pivoting for multibody simulations with contact

Andreas Enzenhoefer, Nicolas Lefebvre, Sheldon Andrews

Simulating stiff physical systems is a requirement for numerous computer graphics applications, such as VR training for heavy equipment operation. However, iterative linear solvers often perform poorly in such cases, and direct methods involving a factorization of the system matrix are typically preferred for accurate and stable simulations. This can have a detrimental impact on performance, since factorization of the system matrix is costly for complex simulations. In this paper, we present a method for efficiently solving linear systems of stiff physical systems involving contact, where the dynamics are modeled as a mixed linear complementarity problem (MLCP). Our approach is based on a block Bard-type algorithm that applies low-rank downdates to a Cholesky factorization of the system matrix at each pivoting step. Further performance improvements are realized by exploiting low bandwidth characteristics of the factorization. Our method gives up to 3.5 times speed-up versus recomputing the factorization based on the index set. Various challenging scenarios are used to demonstrate the advantages of our approach.

Efficient block pivoting for multibody simulations with contact

Aura Projection for Scalable Real-Time Physics

Alexander Brown, Gary Ushaw, Graham Morgan

In this paper we propose a solution to delivering scalable real-time physics simulations. Although high performance computing simulations of physics related problems do exist, these are not real-time and do not model the real-time intricate interactions of rigid bodies for visual effect common in video games (favouring accuracy over real-time). As such, this paper presents the first approach to real-time delivery of scalable, commercial grade, video game quality physics. This is achieved by taking the physics engine out of the player’s machine and deploying it across standard cloud based infrastructures. The simulation world is then divided into sections that are then allocated to servers. A server maintains the physics for all simulated objects in its section. Our contribution is the ability to maintain a scalable simulation by allowing object interaction across section boundaries using predictive migration techniques. We allow each object to project an aura that is used to determine object migration across servers to ensure seamless physics interactions between objects. The validity of our results is demonstrated through experimentation and benchmarking. Our approach allows player interaction at any point in real-time (influencing the simulation) in the same manner as any video game. We believe that this is the first successful demonstration of scalable real-time physics

Aura Projection for Scalable Real-Time Physics

Penalty Force for Coupling Materials with Coulomb Friction

Ounan Ding, Craig Schroeder

We propose a novel penalty force to enforce contacts with accurate Coulomb friction. The force is compatible with fully-implicit time integration and the use of optimization-based integration. The contact force is quite general. In addition to processing collisions between deformable objects, the force can be used to couple rigid bodies to deformable objects or the material point method.The force naturally leads to stable stacking without drift over time, even when solvers are not run to convergence. The force leads to an asymmetrical system, and we provide a practical solution for handling these.

Penalty Force for Coupling Materials with Coulomb Friction

Fast Quadrangular Mass-Spring Systems using Red-Black Ordering

Pontus Pall, Oskar Nylèn, Marco Fratarcangeli

We introduce a practical iterative solver for mass-spring systems which can be trivially mapped to massively parallel architectures, in particular GPUs.We employ our solver for the interactive animation of virtual cloth and show that it is computationally fast, robust and scalable, making it suitable for real-time graphics applications. Under the assumption that the input system is represented by a quadrangular network of masses connected by springs, we first partition the particles into two independent sets. Then, during the animation, the dynamics of all the particles belonging to each set is computed in parallel. This enables a full Gauss-Seidel iteration in just two parallel steps, leading to an approximated solution of large mass-spring systems in a few milliseconds. We use our solver to accelerate the solution of the popular Projective Dynamics framework, and compare it with other common iterative solvers in the current literature.

Fast Quadrangular Mass-Spring Systems using Red-Black Ordering

Laplacian Damping for Projective Dynamics

Jing Li, Tiantian Liu, Ladislav Kavan

Damping is an important ingredient in physics-based simulation of deformable objects. Recent work introduced new fast simulation methods such as Position Based Dynamics and Projective Dynamics. Explicit velocity damping methods currently used in conjunction with Position Based Dynamics or Projective Dynamics are simple and fast, but have some limitations. They may damp global motion or non-physically transport velocities throughout the simulated object. More advanced damping models do not have these limitations, but are slow to evaluate, defeating the benefits of fast solvers such as Projective Dynamics. We present a new type of damping model specifically designed for Projective Dynamics, which provides the quality of advanced damping models while adding only minimal computing overhead. The key idea is to define damping forces using Projective Dynamics’ Laplacian matrix. In a number of simulation examples we show that this damping model works very well in practice. When used with a modified Projective Dynamics solver that uses a non-dissipative implicit midpoint integrator, our damping method provides fully user-controllable damping, allowing the user to quickly produce visually pleasing and vivid animations.

Laplacian Damping for Projective Dynamics

Reformulating Hyperelastic Materials with Peridynamic Modeling

Liyou Xu, Xiaowei He, Wei Chen, Sheng Li, and Guoping Wang

Peridynamics is a formulation of the classical elastic theory that is targeted at simulating deformable objects with discontinuities, especially fractures. Till now, there are few studies that have been focused on how to model general hyperelastic materials with peridynamics. In this paper, we target at proposing a general strain energy function of hyperelastic materials for peridynamics. To get an intuitive model that can be easily controlled, we formulate the strain energy density function as a function parameterized by the dilatation and bond stretches, which can be decomposed into multiple one-dimensional functions independently. To account for nonlinear material behaviors, we also propose a set of nonlinear basis functions to help design a nonlinear strain energy function more easily. For an anisotropic material, we additionally introduce an anisotropic kernel to control the elastic behavior for each bond independently. Experiments show that our model is flexible enough to approximately regenerate various hyperelastic materials in classical elastic theory, including St.Venant-Kirchhoff and Neo-Hookean materi

Reformulating Hyperelastic Materials with Peridynamic Modeling