VoroCrust: Voronoi Meshing Without Clipping

Ahmed Abdelkader, Chandrajit Bajaj, Mohamed Ebeida, Ahmed Mahmoud, Scott Mitchell, John Owens, Ahmad Rushdi

Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrary curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably correct algorithm for conforming Voronoi meshing for non-convex and possibly non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while all sharp features are preserved in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.

VoroCrust: Voronoi Meshing Without Clipping

A Massively Parallel and Scalable Multi-GPU Material Point Method

Xinlei Wang*, Yuxing Qiu* (equal contributions), Stuart Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, Chenfanfu Jiang

Harnessing the power of modern multi-GPU architectures, we present a massively parallel simulation system based on the Material Point Method (MPM) for simulating physical behaviors of materials undergoing complex topological changes, self-collision, and large deformations. Our system makes three critical contributions. First, we introduce a new particle data structure that promotes coalesced memory access patterns on the GPU and eliminates the need for complex atomic operations on the memory hierarchy when writing particle data to the grid. Second, we propose a kernel fusion approach using a new Grid-to-Particles-to-Grid (G2P2G) scheme, which efficiently reduces GPU kernel launches, improves latency, and significantly reduces the amount of global memory needed to store particle data. Finally, we introduce optimized algorithmic designs that allow for efficient sparse grids in a shared memory context, enabling us to best utilize modern multi-GPU computational platforms for hybrid Lagrangian-Eulerian computational patterns. We demonstrate the effectiveness of our method with extensive benchmarks, evaluations, and dynamic simulations with elastoplasticity, granular media, and fluid dynamics. In comparisons against an open-source and heavily optimized CPU-based MPM codebase on an elastic sphere colliding scene with particle counts ranging from 5 to 40 million, our GPU MPM achieves over 100X per-time-step speedup on a workstation with an Intel 8086K CPU and a single Quadro P6000 GPU, exposing exciting possibilities for future MPM simulations in computer graphics and computational science. Moreover, compared to the state-of-the-art GPU MPM method, we not only achieve 2X acceleration on a single GPU but our kernel fusion strategy and Array-of-Structs-of-Array (AoSoA) data structure design also generalize to multi-GPU systems. Our multi-GPU MPM exhibits near-perfect weak and strong scaling with 4 GPUs, enabling performant and large-scale simulations on a 1024x1024x1024 grid with close to 100 million particles with less than 4 minutes per frame on a single 4-GPU workstation and 134 million particles with less than 1 minute per frame on an 8-GPU workstation.

A Massively Parallel and Scalable Multi-GPU Material Point Method

Lagrangian Neural Style Transfer for Fluids

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, Barbara Solenthaler

Artistically controlling the shape, motion and appearance of fluid simulations pose major challenges in visual effects production. In this paper, we present a neural style transfer approach from images to 3D fluids formulated in a Lagrangian viewpoint. Using particles for style transfer has unique benefits compared to grid-based techniques. Attributes are stored on the particles and hence are trivially transported by the particle motion. This intrinsically ensures temporal consistency of the optimized stylized structure and notably improves the resulting quality. Simultaneously, the expensive, recursive alignment of stylization velocity fields of grid approaches is unnecessary, reducing the computation time to less than an hour and rendering neural flow stylization practical in production settings. Moreover, the Lagrangian representation improves artistic control as it allows for multi-fluid stylization and consistent color transfer from images, and the generality of the method enables stylization of smoke and liquids likewise.

Lagrangian Neural Style Transfer for Fluids

SIGGRAPH 2020

TOG:

Homogenized Yarn-Level Cloth

Georg Sperl, Rahul Narain, Chris Wojtan

We present a method for animating yarn-level cloth effects using a thin-shell solver. We accomplish this through numerical homogenization: we first use a large number of yarn-level simulations to build a model of the potential energy density of the cloth and then use this energy density function to compute forces in a thin shell simulator. We model several yarn-based materials, including both woven and knitted fabrics. Our model faithfully reproduces expected effects like the stiffness of woven fabrics, and the highly deformable nature and anisotropy of knitted fabrics. Our approach does not require any real-world experiments nor measurements; because the method is based entirely on simulations, it can generate entirely new material models quickly, without the need for testing apparatuses or human intervention. We provide data-driven models of several woven and knitted fabrics, which can be used for efficient simulation with an off-the-shelf cloth solver.

Homogenized Yarn-Level Cloth

A Model for Soap Film Dynamics with Evolving Thickness

Sadashige Ishida*, Peter Synak*, Fumiya Narita, Toshiya Hachisuka, Chris Wojtan

Previous research on animations of soap bubbles, films, and foams largely focuses on the motion and geometric shape of the bubble surface. These works neglect the evolution of the bubble’s thickness, which is normally responsible for visual phenomena like surface vortices, Newton’s interference patterns, capillary waves, and deformation-dependent rupturing of films in a foam. In this paper, we model these natural phenomena by introducing the film thickness as a reduced degree of freedom in the Navier-Stokes equations and deriving their equations of motion. We discretize the equations on a non-manifold triangle mesh surface and couple it to an existing bubble solver. In doing so, we also introduce an incompressible fluid solver for 2.5D films and a novel advection algorithm for convecting fields across non-manifold surface junctions. Our simulations enhance state-of-the-art bubble solvers with additional effects caused by convection, rippling, draining, and evaporation of the thin film.

A Model for Soap Film Dynamics with Evolving Thickness

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling

Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, Xiaopei Liu

Despite their cinematic appeal, turbulent flows involving fluid-solid coupling remain a computational challenge in animation. At the root of the current limitation is the numerical dispersion from which most accurateNavier-Stokes solvers suffer: proper coupling between fluid and solid often generates artificial dispersion in the form of local, parasitic trains of velocity oscillations, eventually leading to numerical instability. While successive improvements over the years have led to conservative and detail-preserving fluid integrators, the dispersive nature of these solvers is rarely discussed despite its dramatic impact on fluid-structure interaction. In this paper, we introduce a novel low-dissipation and low-dispersion fluid solver that can simulate two-way coupling in an efficient and scalable manner, even for turbulent flows. In sharp contrast with most current CG approaches, we construct our solver from a kinetic formulation of the flow derived from statistical mechanics. Unlike existing lattice Boltzmann solvers, our approach leverages high-order moment relaxations as a key to controlling both dissipation and dispersion of the resulting scheme. Moreover, we combine our new fluid solver with the immersed boundary method to easily handle fluid-solid coupling through time adaptive simulations. Our kinetic solver is highly parallelizable by nature, making it ideally suited for implementation on single- or multi-GPU computing platforms. Extensive comparisons with existing solvers on synthetic tests and real-life experiments are used to highlight the multiple advantages of our work over traditional and more recent approaches, in terms of accuracy, scalability, and efficiency.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling

Hierarchical Optimization Time Integration for CFL-rate MPM Stepping

Xinlei Wang*, Minchen Li*, Yu Fang, Xinxin Zhang, Ming Gao, Min Tang, Danny M. Kaufman, Chenfanfu Jiang

We propose Hierarchical Optimization Time Integration (HOT) for efficient implicit time-stepping of the Material Point Method (MPM) irrespective of simulated materials and conditions. HOT is an MPM-specialized hierarchical optimization algorithm that solves nonlinear time step problems for large-scale MPM systems near the CFL-limit. HOT provides convergent simulations “out-of-the-box” across widely varying materials and computational resolutions without parameter tuning. As an implicit MPM time stepper accelerated by a custom-designed Galerkin multigrid wrapped in a quasi-Newton solver, HOT is both highly parallelizable and robustly convergent. As we show in our analysis, HOT maintains consistent and efficient performance even as we grow stiffness, increase deformation, and vary materials over a wide range of finite strain, elastodynamic and plastic examples. Through careful benchmark ablation studies, we compare the effectiveness of HOT against seemingly plausible alternative combinations of MPM with standard multigrid and other Newton-Krylov models. We show how these alternative designs result in severe issues and poor performance. In contrast, HOT outperforms the existing state-of-the-art, heavily optimized implicit MPM codes with an up to 10x performance speedup across a wide range of challenging benchmark test simulations.

Hierarchical Optimization Time Integration for CFL-rate MPM Stepping

Constraint Bubbles and Affine Regions: Reduced Fluid Models for Efficient Immersed Bubbles and Flexible Spatial Coarsening

Ryan Goldade, Mridul Aanjaneya, Christopher Batty

We propose to enhance the capability of standard free-surface flow simulators with efficient support for immersed bubbles through two new models: constraint-based bubbles and affine fluid regions. Unlike its predecessors, our constraint-based model entirely dispenses with the need for advection or projection inside zero-density bubbles, with extremely modest additional computational overhead that is proportional to the surface area of all bubbles. This surface-only approach is easy to implement, realistically captures many familiar bubble behaviors, and even allows two or more distinct liquid bodies to correctly interact across completely unsimulated air. We augment this model with a per-bubble volume-tracking and correction framework to minimize the cumulative effects of gradual volume drift. To support bubbles with non-zero densities, we propose a novel reduced model for an irregular fluid region with a single pointwise incompressible affine vector field. This model requires only 11 interior velocity degrees of freedom per affine fluid region in 3D, and correctly reproduces buoyant, stationary, and sinking behaviors of a secondary fluid phase with non-zero density immersed in water. Since the pressure projection step in both the above schemes is a slightly modified Poisson-style system, we propose novel Multigrid-based preconditioners for Conjugate Gradients for fast numerical solutions of our new discretizations. Furthermore, we observe that by enforcing an incompressible affine vector field over a coalesced set of grid cells, our reduced model is effectively an irregular coarse super-cell. This offers a convenient and flexible adaptive coarsening strategy that integrates readily with the standard staggered grid approach for fluid simulation, yet supports coarsened regions that are arbitrary voxelized shapes, and provides an analytically divergence-free interior. We demonstrate its effectiveness with a new adaptive liquid simulator whose interior regions are coarsened into a mix of tiles with regular and irregular shapes.

Constraint Bubbles and Affine Regions: Reduced Fluid Models for Efficient Immersed Bubbles and Flexible Spatial Coarsening

Medial Elastics:Efficient and Collision-ready Deformation via Medial Axis Transform

Lei Lan, Ran Luo, Marco Fratarcangeli, Weiwei Xu, Huamin Wang, Xiaohu Guo, Junfeng Yao, Yin Yang

We propose a framework for the interactive simulation of nonlinear de-formable objects. The primary feature of our system is the seamless integration of deformable simulation and collision culling, which are often independently handled in existing animation systems. The bridge connect-ing them is the medial axis transform or MAT, a high-fidelity volumetric approximation of complex 3D shapes. From the physics simulation perspective, MAT leads to an expressive and compact reduced nonlinear model. We employ a semi-reduced projective dynamics formulation, which well captures high-frequency local deformations of high-resolution models while retaining a low computation cost. Our key observation is that the most compelling (nonlinear) deformable effects are enabled by the local constraint projection, which should not be aggressively reduced, and only apply model reduction at the global stage. From the collision detection/culling perspective, MAT is geometrically versatile using linear-interpolated spheres (i.e.the so-called medial primitives) to approximate the boundary of the input model. The intersection test between two medial primitives is formulated as a quadratically constrained quadratic program problem. We give an algorithm to solve this problem exactly, which returns the deepest penetration between a pair of intersecting medial primitives. When coupled with spatial hashing, collision (including self-collision) can be efficiently identified on the GPU within few milliseconds even for massive simulations. We have tested our system on a variety of geometrically complex and high-resolution deformable objects, and our system produces convincing animations with all the collisions/self-collisions well handled at an interactive rate.

Medial Elastics: Efficient and Collision-ready Deformation via Medial Axis Transform