Fast and Exact Root Parity for Continuous Collision Detection

Bolun Wang, Zachary Ferguson, Xin Jiang, Marco Attene, Daniele Panozzo, Teseo Schneider

We introduce the first exact root parity counter for continuous collision detection (CCD). That is, our algorithm computes the parity (even or odd) of the number of roots of the cubic polynomial arising from a CCD query. We note that the parity is unable to differentiate between zero (no collisions) and the rare case of two roots (collisions). Our method does not have numerical parameters to tune, has a performance comparable to efficient approximate algorithms, and is exact. We test our approach on a large collection of synthetic tests and real simulations, and we demonstrate that it can be easily integrated into existing simulators.

Fast and Exact Root Parity for Continuous Collision Detection

Optimized Processing of Localized Collisions in Projective Dynamics

Qisi Wang, Yutian Tao, Eric Brandt, Court Cutting, Eftychios Sifakis

We present a method for the efficient processing of contact and collision in volumetric elastic models simulated using the Projective Dynamics paradigm. Our approach enables interactive simulation of tetrahedral meshes with more than half a million elements, provided that the model satisfies two fundamental properties: the region of the model’s surface that is susceptible to collision events needs to be known in advance, and the simulation degrees of freedom associated with that surface region should be limited to a small fraction (e.g. 5\%) of the total simulation nodes. Despite this conscious delineation of scope, our hypotheses hold true for common animation subjects, such as simulated models of the human face and parts of the body. In such scenarios, a partial Cholesky factorization can abstract away the behavior of the collision-safe subset of the face into the Schur Complement matrix with respect to the collision-prone region. We demonstrate how fast and accurate updates of penalty-based collision terms can be incorporated into this representation, and solved with high efficiency on the GPU. We also demonstrate the opportunity to iterate a partial update of the element rotations, akin to a selective application of the local step, specifically on the smaller collision-prone region without explicitly paying the cost associated with the rest of the simulation mesh. We demonstrate efficient and robust interactive simulation in detailed models from animation and medical applications

Optimized Processing of Localized Collisions in Projective Dynamics

A-ULMPM: An Arbitrary Updated Lagrangian Material Point Method for Efficient Simulation of Solids and Fluids

Haozhe Su, Tao Xue, Chengguizi Han, Mridul Aanjaneya

We present an arbitrary updated Lagrangian Material Point Method (A-ULMPM) to alleviate issues, such as the cell-crossing instability and numerical fracture, that plague state of the art Eulerian formulations of MPM, while still allowing for large deformations that arise in fluid simulations. Our proposed framework spans MPM discretizations from total Lagrangian formulations to Eulerian formulations. We design an easy-to-implement physics-based criterion that allows A-ULMPM to update the reference configuration adaptively for measuring physical states including stress, strain, interpolation kernels and their derivatives. For better efficiency and conservation of angular momentum, we further integrate the APIC[Jiang et al. 2015] and MLS-MPM[Hu et al. 2018] formulations in A-ULMPM by augmenting the accuracy of velocity rasterization using both the local velocity and its first-order derivatives. Our theoretical derivations use a nodal discretized Lagrangian, instead of the weak form discretization in MLS-MPM[Hu et al. 2018], and naturally lead to a “modified” MLS-MPM in A-ULMPM, which can recover MLS-MPM using a completely Eulerian formulation. A-ULMPM does not require significant changes to traditional Eulerian formulations of MPM, and is computationally more efficient since it only updates interpolation kernels and their derivatives when large topology changes occur. We present end-to-end 3D simulations of stretching and twisting hyperelastic solids, splashing liquids, and multi-material interactions with large deformations to demonstrate the efficacy of our novel A-ULMPM framework.

A-ULMPM: An Arbitrary Updated Lagrangian Material Point Method for Efficient Simulation of Solids and Fluids

Eurographics 2022

A Deep Emulator for Secondary Motion of 3D Characters

Mianlun Zheng, Yi Zhou, Duygu Ceylan, Jernej Barbič

Fast and light-weight methods for animating 3D characters are desirable in various applications such as computer games. We present a learning-based approach to enhance skinning-based animations of 3D characters with vivid secondary motion effects. We design a neural network that encodes each local patch of a character simulation mesh where the edges implicitly encode the internal forces between the neighboring vertices. The network emulates the ordinary differential equations of the character dynamics, predicting new vertex positions from the current accelerations, velocities and positions. Being a local method, our network is independent of the mesh topology and generalizes to arbitrarily shaped 3D character meshes at test time. We further represent per-vertex constraints and material properties such as stiffness, enabling us to easily adjust the dynamics in different parts of the mesh. We evaluate our method on various character meshes and complex motion sequences. Our method can be over 30 times more efficient than ground-truth physically based simulation, and outperforms alternative solutions that provide fast approximations.

A Deep Emulator for Secondary Motion of 3D Characters

Soft Articulated Characters in Projective Dynamics

Jing Li, Tiantian Liu, Ladislav Kavan

We propose a fast and robust solver to simulate continuum-based deformable models with constraints, in particular, rigid-body and joint constraints useful for soft articulated characters. Our method embeds the degrees of freedom of both articulated rigid bodies and deformable bodies in one unified constrained optimization problem, thus coupling the deformable and rigid bodies. Inspired by Projective Dynamics which is a fast numerical solver to simulate deformable objects, we also propose a novel local/global solver that takes full advantage of the pre-factorized system matrices to accelerate the solve of our constrained optimization problem. Therefore, our method can efficiently simulate character models, with rigid-body parts (bones) being correctly coupled with deformable parts (flesh). Our method is stable because backward Euler time integration is applied to both rigid and deformable degrees of freedom. Our unified optimization problem is rigorously derived from constrained Newtonian mechanics. When simulating only articulated rigid bodies as a special case, our method converges to the state-of-the-art rigid body simulators.

Soft Articulated Characters in Projective Dynamics

Recent Courses & Resources

Unified particle system for multiple-fluid flow and porous material

Bo Ren, Ben Xu, Chenfeng Li

Porous materials are common in daily life. They include granular material (e.g. sand) that behaves like liquid flow when mixed with fluid and foam material (e.g. sponge) that deforms like solid when interacting with liquid. The underlying physics is further complicated when multiple fluids interact with porous materials involving coupling between rigid and fluid bodies, which may follow different physics models such as the Darcy’s law and the multiple-fluid Navier-Stokes equations. We propose a unified particle framework for the simulation of multiple-fluid flows and porous materials. A novel virtual phase concept is introduced to avoid explicit particle state tracking and runtime particle deletion/insertion. Our unified model is flexible and stable to cope with multiple fluid interacting with porous materials, and it can ensure consistent mass and momentum transport over the whole simulation space.

Unified particle system for multiple-fluid flow and porous material

Semi-analytical Solid Boundary Conditions for Free Surface Flows

Yue Chang, Shusen Liu, Xiaowei He, Sheng Li, Guoping Wang

The treatment of solid boundary conditions remains one of the most challenging parts in the SPH method. We present a semi-analytical approach to handle complex solid boundaries of arbitrary shape. Instead of calculating a renormalizing factor for the particle near the boundary, we propose to calculate the volume integral inside the solid boundary under the local spherical frame of a particle. By converting the volume integral into a surface integral, a computer aided design (CAD) mesh file representing the boundary can be naturally integrated for particle simulations. To accelerate the search for a particle’s neighboring triangles, a uniform grid is applied to store indices of intersecting triangles. The new semi-analytical solid boundary handling approach is integrated into a position-based method [MM13] as well as a projection-based [HWW∗20] to demonstrate its effectiveness in handling complex boundaries. Experiments show that our method is able to achieve comparable results with those simulated using ghost particles. In addition, since our method requires no boundary particles for deforming surfaces, our method is flexible enough to handle complex solid boundaries, including sharp corners and shells.

Semi-analytical Solid Boundary Conditions for Free Surface Flows

A Lagrangian Particle-based Formulation for Coupled Simulation of Fracture and Diffusion in Thin Membranes

Chengguizi Han*, Tao Xue*, Mridul Aanjaneya

We propose a Lagrangian particle-based formulation for simulating deformation, fracture, and diffusion in thin membrane-like structures, such as aluminium foil, rubbery films, and seaweed flakes. We integrate our model with diffusion processes and derive a unified framework for simulating deformation-diffusion coupled phenomena, which is applied to provide realistic heterogeneity induced by the diffusion process to fracture patterns. To the best of our knowledge, our work is the first to simulate the complex fracture patterns of single-layered membranes in computer graphics and introduce heterogeneity induced by the diffusion process, which generates more geometrically rich fracture patterns. Our end-to-end 3D simulations show that our deformation-diffusion coupling framework captures detailed fracture growth patterns in thin membranes due to both in-plane and out-of-plane motions, producing realistically wrinkled slit edges, and heterogeneity introduced due to diffusion.

A Lagrangian Particle-based Formulation for Coupled Simulation of Fracture and Diffusion in Thin Membranes