Adaptive Rigidification of Elastic Solids

Alexandre Mercier-Aubin, Alexander Winter, David I.W. Levin, Paul G. Kry

We present a method for reducing the computational cost of elastic solid simulation by treating connected sets of non-deforming elements as rigid bodies. Non-deforming elements are identified as those where the strain rate squared Frobenius norm falls below a threshold for several frames. Rigidification uses a breadth first search to identify connected components while avoiding connections that would form hinges between rigid components. Rigid elements become elastic again when their approximate strain velocity rises above a threshold, which is fast to compute using a single iteration of conjugate gradient with a fixed Laplacian-based incomplete Cholesky preconditioner. With rigidification, the system size to solve at each time step can be greatly reduced, and if all elastic element become rigid, it reduces to solving the rigid body system. We demonstrate our results on a variety of 2D and 3D examples, and show that our method is likewise especially beneficial in contact rich examples.

Adaptive Rigidification of Elastic Solids

Efficient Kinetic Simulation of Two-Phase Flows

Wei Li, Yihui Ma, Xiaopei Liu, Mathieu Desbrun

Real-life multiphase flows exhibit a number of complex and visually appealing behaviors, involving bubbling, wetting, splashing, and glugging. However, most state-of-the-art simulation techniques in graphics can only demonstrate a limited range of multiphase flow phenomena, due to their inability to handle the real water-air density ratio and to the large amount of numerical viscosity introduced in the flow simulation and its coupling with the interface. Recently, kinetic-based methods have achieved success in simulating large density ratios and high Reynolds numbers efficiently; but their memory overhead, limited stability, and numerically-intensive treatment of coupling with immersed solids remain enduring obstacles to their adoption in movie productions. In this paper, we propose a new kinetic solver to couple the incompressible Navier-Stokes equations with a conservative phase-field equation which remedies these major practical hurdles. The resulting two-phase immiscible fluid solver is shown to be efficient due to its massively-parallel nature and GPU implementation, as well as very versatile and reliable because of its enhanced stability to large density ratios, high Reynolds numbers, and complex solid boundaries. We highlight the advantages of our solver through various challenging simulation results that capture intricate and turbulent air-water interaction, including comparisons to previous work and real footage.

Efficient Kinetic Simulation of Two-Phase Flows

Affine Body Dynamics: Fast, Stable & Intersection-free Simulation of Stiff Materials

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, Yin Yang

Simulating stiff materials in applications where deformations are either not significant or else can safely be ignored is a fundamental task across fields. Rigid body modeling has thus long remained a critical tool and is, by far, the most popular simulation strategy currently employed for modeling stiff solids. At the same time, rigid body methods continue to pose a number of well known challenges and trade-offs including intersections, instabilities, inaccuracies, and/or slow performances that grow with contact-problem complexity. In this paper we revisit the stiff body problem and present ABD, a simple and highly effective affine body dynamics framework, which significantly improves state-of-the-art for simulating stiff-body dynamics. We trace the challenges in rigid-body methods to the necessity of linearizing piecewise-rigid trajectories and subsequent constraints. ABD instead relaxes the unnecessary (and unrealistic) constraint that each body’s motion be exactly rigid with a stiff orthogonality potential, while preserving the rigid body model’s key feature of a small coordinate representation. In doing so ABD replaces piecewise linearization with piecewise linear trajectories. This, in turn, combines the best of both worlds: compact coordinates ensure small, sparse system solves, while piecewise-linear trajectories enable efficient and accurate constraint (contact and joint) evaluations. Beginning with this simple foundation, ABD preserves all guarantees of the underlying IPC model we build it upon, e.g., solution convergence, guaranteed non-intersection, and accurate frictional contact. Over a wide range and scale of simulation problems we demonstrate that ABD brings orders of magnitude performance gains (two- to three-orders on the CPU and an order more when utilizing the GPU, obtaining 10, 000× speedups) over prior IPC-based methods, while maintaining simulation quality and nonintersection of trajectories. At the same time ABD has comparable or faster timings when compared to state-of-the-art rigid body libraries optimized for performance without guarantees, and successfully and efficiently solves challenging simulation problems where both classes of prior rigid body simulation methods fail altogether.

Affine Body Dynamics: Fast, Stable & Intersection-free Simulation of Stiff Materials

Penetration-free Projective Dynamics on the GPU

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, Chenfanfu Jiang

We present a GPU algorithm for deformable simulation. Our method offers good computational efficiency and penetration-free guarantee at the same time, which are not common with existing techniques. The main idea is an algorithmic integration of projective dynamics (PD) and incremental potential contact (IPC). PD is a position-based simulation framework, favored for its robust convergence and convenient implementation. We show that PD can be employed to handle the variational optimization with the interior point method e.g., IPC. While conceptually straightforward, this requires a dedicated rework over the collision resolution and the iteration modality to avoid incorrect collision projection with improved numerical convergence. IPC exploits a barrier-based formulation, which yields an infinitely large penalty when the constraint is on the verge of being violated. This mechanism guarantees intersection-free trajectories of deformable bodies during the simulation, as long as they are apart at the rest configuration. On the downside, IPC brings a large amount of nonlinearity to the system, making PD slower to converge. To mitigate this issue, we propose a novel GPU algorithm named A-Jacobi for faster linear solve at the global step of PD. A-Jacobi is based on Jacobi iteration, but it better harvests the computation capacity on modern GPUs by lumping several Jacobi steps into a single iteration. In addition, we also re-design the CCD root finding procedure by using a new minimum-gradient Newton algorithm. Those saved time budgets allow more iterations to accommodate stiff IPC barriers so that the result is both realistic and collision-free. Putting together, our algorithm simulates complicated models of both solids and shells on the GPU at an interactive rate or even in real time.

Penetration-free Projective Dynamics on the GPU

The Power Particle-In-Cell Method

Ziyin Qu, Minchen Li, Fernando de Goes, Chenfanfu Jiang

This paper introduces a new weighting scheme for particle-grid transfers that generates hybrid Lagrangian/Eulerian fluid simulations with uniform particle distributions and precise volume control. At its core, our approach reformulates the construction of Power Particles [de Goes et al . 2015] by computing volume-constrained density kernels. We employ these optimized kernels as particle domains within the Generalized Interpolation Material Point method (GIMP) in order to incorporate Power Particles into the Particle-In-Cell framework, hence the name the Power Particle-In-Cell method. We address the construction of volume-constrained density kernels as a regularized optimal transportation problem and describe an iterative solver based on localized Gaussian convolutions that leads to a significant performance speedup compared to [de Goes et al . 2015]. We also present novel extensions for handling free surfaces and solid obstacles that bypass the need for cell clipping and ghost particles. We demonstrate the advantages of our transfer weights by improving hybrid schemes for fluid simulation such as the Fluid Implicit Particle (FLIP) method and the Affine Particle-In-Cell (APIC) method with volume preservation and robustness to varying particle-per-cell ratio, while retaining low numerical dissipation, conserving linear and angular momenta, and avoiding particle reseeding or post-process relaxations.

The Power Particle-In-Cell Method

Energetically Consistent Inelasticity for Optimization Time Integration

Xuan Li, Minchen Li, Chenfanfu Jiang

In this paper, we propose Energetically Consistent Inelasticity (ECI), a new formulation for modeling and discretizing finite strain elastoplasticity/viscoelasticity in a way that is compatible with optimization-based time integrators. We provide an in-depth analysis for allowing plasticity to be implicitly integrated through an augmented strain energy density function. We develop ECI on the associative von-Mises J2 plasticity, the non-associative Drucker-Prager plasticity, and the finite strain viscoelasticity. We demonstrate the resulting scheme on both the Finite Element Method (FEM) and the Material Point Method (MPM). Combined with a custom Newton-type optimization integration scheme, our method enables simulating stiff and large-deformation inelastic dynamics of metal, sand, snow, and foam with larger time steps, improved stability, higher efficiency, and better accuracy than existing approaches.

Energetically Consistent Inelasticity for Optimization Time Integration

A Unified Newton Barrier Method for Multibody Dynamics

Yunuo Chen*, Minchen Li* (equal contributions), Lei Lan, Hao Su, Yin Yang, Chenfanfu Jiang

We present a simulation framework for multibody dynamics via a universal variational integration. Our method naturally supports mixed rigid-deformables and mixed codimensional geometries, while providing guaranteed numerical convergence and accurate resolution of contact, friction, and a wide range of articulation constraints. We unify (1) the treatment of simulation degrees of freedom for rigid and soft bodies by formulating them both in terms of Lagrangian nodal displacements, (2) the handling of general linear equality joint constraints through an efficient change-of-variable strategy, (3) the enforcement of nonlinear articulation constraints based on novel distance potential energies, (4) the resolution of frictional contact between mixed dimensions and bodies with a variational Incremental Potential Contact formulation, and (5) the modeling of generalized restitution through semi-implicit Rayleigh damping. We conduct extensive unit tests and benchmark studies to demonstrate the efficacy of our method.

A Unified Newton Barrier Method for Multibody Dynamics

Go Green: General Regularized Green’s Functions for Elasticity

Jiong Chen, Mathieu Desbrun

The fundamental solutions (Green’s functions) of linear elasticity for an infinite and isotropic media are ubiquitous in interactive graphics applications that cannot afford the computational costs of volumetric meshing and finite-element simulation. For instance, the recent work of de Goes and James [2017] leveraged these Green’s functions to formulate sculpting tools capturing in real-time broad and physically-plausible deformations more intuitively and realistically than traditional editing brushes. In this paper, we extend this family of Green’s functions by exploiting the anisotropic behavior of general linear elastic materials, where the relationship between stress and strain in the material depends on its orientation. While this more general framework prevents the existence of analytical expressions for its fundamental solutions, we show that a finite sum of spherical harmonics can be used to decompose a Green’s function, which can be further factorized into directional, radial, and material-dependent terms. From such a decoupling, we show how to numerically derive sculpting brushes to generate anisotropic deformation and finely control their falloff profiles in real-time.

Go Green: General Regularized Green’s Functions for Elasticity

An Efficient B-Spline Lagrangian/Eulerian Method for Compressible Flow, Shock Waves, and Fracturing Solids

Yadi Cao, Yunuo Chen, Minchen Li, Yin Yang, Xinxin Zhang, Mridul Aanjaneya, Chenfanfu Jiang

This study presents a new method for modeling the interaction between compressible flow, shock waves, and deformable structures, emphasizing destructive dynamics. Extending advances in time-splitting compressible flow and the Material Point Methods (MPM), we develop a hybrid Eulerian and Lagrangian/Eulerian scheme for monolithic flow-structure interactions. We adopt the second-order WENO scheme to advance the continuity equation. To stably resolve deforming boundaries with sub-cell particles, we propose a blending treatment of reflective and passable boundary conditions inspired by the theory of porous media. The strongly coupled velocity-pressure system is discretized with a new mixed-order finite element formulation employing B-spline shape functions. Shock wave propagation, temperature/density-induced buoyancy effects, and topology changes in solids are unitedly captured.

An Efficient B-Spline Lagrangian/Eulerian Method for Compressible Flow, Shock Waves, and Fracturing Solids

A Moving Eulerian-Lagrangian Particle Method for Thin Film and Foam Simulation

Yitong Deng, Mengdi Wang, Xiangxin Kong, Shiying Xiong, Zangyueyang Xian, Bo Zhu

We present the Moving Eulerian-Lagrangian Particles (MELP), a novel mesh-free method for simulating incompressible fluid on thin films and foams. Employing a bi-layer particle structure, MELP jointly simulates detailed, vigorous flow and large surface deformation at high stability and efficiency. In addition, we design multi-MELP: a mechanism that facilitates the physically-based interaction between multiple MELP systems, to simulate bubble clusters and foams with non-manifold topological evolution. We showcase the efficacy of our method with a broad range of challenging thin film phenomena, including the Rayleigh-Taylor instability across double-bubbles, foam fragmentation with rim surface tension, recovery of the Plateau borders, Newton black films, as well as cyclones on bubble clusters.

A Moving Eulerian-Lagrangian Particle Method for Thin Film and Foam Simulation