Fast Octree Neighborhood Search for SPH Simulations

José Antonio Fernández-Fernández, Lukas Westhofen, Fabian Löschner, Stefan Rhys Jeske, Andreas Longva, Jan Bender

We present a new octree-based neighborhood search method for SPH simulation. A speedup of up to 1.9x is observed in comparison to state-of-the-art methods which rely on uniform grids. While our method focuses on maximizing performance in fixed-radius SPH simulations, we show that it can also be used in scenarios where the particle support radius is not constant thanks to the adaptive nature of the octree acceleration structure. Neighborhood search methods typically consist of an acceleration structure that prunes the space of possible particle neighbor pairs, followed by direct distance comparisons between the remaining particle pairs. Previous works have focused on minimizing the number of comparisons. However, in an effort to minimize the actual computation time, we find that distance comparisons exhibit very high throughput on modern CPUs. By permitting more comparisons than strictly necessary, the time spent on preparing and searching the acceleration structure can be reduced, yielding a net positive speedup. The choice of an octree acceleration structure, instead of the uniform grid typically used in fixed-radius methods, ensures balanced computational tasks. This benefits both parallelism and provides consistently high computational intensity for the distance comparisons. We present a detailed account of high-level considerations that, together with low-level decisions, enable high throughput for performance-critical parts of the algorithm. Finally, we demonstrate the high performance of our algorithm on a number of large-scale fixed-radius SPH benchmarks and show in experiments with a support radius ratio up to 3 that our method is also effective in multi-resolution SPH simulations.

Fast Octree Neighborhood Search for SPH Simulations

Hidden Degrees of Freedom in Implicit Vortex Filaments

Sadashige Ishida,Chris Wojtan,Albert Chern

This paper presents a new representation of curve dynamics, with applications to vortex filaments in fluid dynamics. Instead of representing these filaments with explicit curve geometry and Lagrangian equations of motion, we represent curves implicitly with a new co-dimensional 2 level set description. Our implicit representation admits several redundant mathematical degrees of freedom in both the configuration and the dynamics of the curves, which can be tailored specifically to improve numerical robustness, in contrast to naive approaches for implicit curve dynamics that suffer from overwhelming numerical stability problems. Furthermore, we note how these hidden degrees of freedom perfectly map to a Clebsch representation in fluid dynamics. Motivated by these observations, we introduce untwisted level set functions and non-swirling dynamics which successfully regularize sources of numerical instability, particularly in the twisting modes around curve filaments. A consequence is a novel simulation method which produces stable dynamics for large numbers of interacting vortex filaments and effortlessly handles topological changes and re-connection events.

Hidden Degrees of Freedom in Implicit Vortex Filaments

Fluidic Topology Optimization with an Anisotropic Mixture Model

Yifei Li, Tao Du, Sangeetha Grama Srinivasan, Kui Wu, Bo Zhu, Eftychios Sifakis, Wojciech Matusik

Fluidic devices are crucial components in many industrial applications involving fluid mechanics. Computational design of a high-performance fluidic system faces multifaceted challenges regarding its geometric representation and physical accuracy. We present a novel topology optimization method to design fluidic devices in a Stokes flow context. Our approach is featured by its capability in accommodating a broad spectrum of boundary conditions at the solid-fluid interface. Our key contribution is an anisotropic and differentiable constitutive model that unifies the representation of different phases and boundary conditions in a Stokes model, enabling a topology optimization method that can synthesize novel structures with accurate boundary conditions from a background grid discretization. We demonstrate the efficacy of our approach by conducting several fluidic system design tasks with over two million design parameters.

Fluidic Topology Optimization with an Anisotropic Mixture Model

Dressing Avatars: Deep Photorealistic Appearance for Physically Simulated Clothing

Donglai Xiang, Timur Bagautdinov, Tuur Stuyck, Fabian Prada, Javier Romero, Weipeng Xu, Shunsuke Saito, Jingfan Guo, Breannan Smith, Takaaki Shiratori, Yaser Sheikh, Jessica Hodgins, Chenglei Wu

Despite recent progress in developing animatable full-body avatars, realistic modeling of clothing – one of the core aspects of human self-expression – remains an open challenge. State-of-the-art physical simulation methods can generate realistically behaving clothing geometry at interactive rates. Modeling photorealistic appearance, however, usually requires physically-based rendering which is too expensive for interactive applications. On the other hand, data-driven deep appearance models are capable of efficiently producing realistic appearance, but struggle at synthesizing geometry of highly dynamic clothing and handling challenging body-clothing configurations. To this end, we introduce pose-driven avatars with explicit modeling of clothing that exhibit both photorealistic appearance learned from real-world data and realistic clothing dynamics. The key idea is to introduce a neural clothing appearance model that operates on top of explicit geometry: at training time we use high-fidelity tracking, whereas at animation time we rely on physically simulated geometry. Our core contribution is a physically-inspired appearance network, capable of generating photorealistic appearance with view-dependent and dynamic shadowing effects even for unseen body-clothing configurations. We conduct a thorough evaluation of our model and demonstrate diverse animation results on several subjects and different types of clothing. Unlike previous work on photorealistic full-body avatars, our approach can produce much richer dynamics and more realistic deformations even for many examples of loose clothing. We also demonstrate that our formulation naturally allows clothing to be used with avatars of different people while staying fully animatable, thus enabling, for the first time, photorealistic avatars with novel clothing.

Dressing Avatars: Deep Photorealistic Appearance for Physically Simulated Clothing

Learning-Based Bending Stiffness Parameter Estimation by a Drape Tester

Xudong Feng, Wenchao Huang, Weiwei Xu, Huamin Wang

Real-world fabrics often possess complicated nonlinear, anisotropic bending stiffness properties. Measuring the physical parameters of such properties for physics-based simulation is difficult yet unnecessary, due to the persistent existence of numerical errors in simulation technology. In this work, we propose to adopt a simulation-in-the-loop strategy: instead of measuring the physical parameters, we estimate the simulation parameters to minimize the discrepancy between reality and simulation. This strategy offers good flexibility in test setups, but the associated optimization problem is computationally expensive to solve by numerical methods. Our solution is to train a regression-based neural network for inferring bending stiffness parameters, directly from drape features captured in the real world. Specifically, we choose the Cusick drape test method and treat multiple-view depth images as the feature vector. To effectively and efficiently train our network, we develop a highly expressive and physically validated bending stiffness model, and we use the traditional cantilever test to collect the parameters of this model for 618 real-world fabrics. Given the whole parameter data set, we then construct a parameter subspace, generate new samples within the subspace, and finally simulate and augment synthetic data for training purposes. The experiment shows that our trained system can replace cantilever tests for quick, reliable and effective estimation of simulation-ready parameters. Thanks to the use of the system, our simulator can now faithfully simulate bending effects comparable to those in the real world.

Learning-Based Bending Stiffness Parameter Estimation by a Drape Tester

Neural Cloth Simulation

Hugo Bertiche, Meysam Madadi, Sergio Escalera

We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.

Neural Cloth Simulation

Motion Guided Deep Dynamic 3D Garments

Meng Zhang, Duygu Ceylan, Niloy J. Mitra

Realistic dynamic garments on animated characters have many AR/VR applications. While authoring such dynamic garment geometry is still a challenging task, data-driven simulation provides an attractive alternative, especially if it can be controlled simply using the motion of the underlying character. In this work, we focus on motion guided dynamic 3D garments, especially for loose garments. In a data-driven setup, we first learn a generative space of plausible garment geometries. Then, we learn a mapping to this space to capture the motion dependent dynamic deformations, conditioned on the previous state of the garment as well as its relative position with respect to the underlying body. Technically, we model garment dynamics, driven using the input character motion, by predicting per-frame local displacements in a canonical state of the garment that is enriched with frame-dependent skinning weights to bring the garment to the global space. We resolve any remaining per-frame collisions by predicting residual local displacements. The resultant garment geometry is used as history to enable iterative roll-out prediction. We demonstrate plausible generalization to unseen body shapes and motion inputs, and show improvements over multiple state-of-the-art alternatives.

Motion Guided Deep Dynamic 3D Garments

Mixed Variational Finite Elements for Implicit Simulation of Deformables

Ty Trusty, Danny M. Kaufman, David I. W. Levin

We propose and explore a new method for the implicit time integration of elastica. Key to our approach is the use of a mixed variational principle. In turn, its finite element discretization leads to an efficient and accurate sequential quadratic programming solver with a superset of the desirable properties of many previous integration strategies. This framework fits a range of elastic constitutive models and remains stable across a wide span of time step sizes and material parameters (including problems that are approximately rigid). Our method exhibits convergence on par with full Newton type solvers and also generates visually plausible results in just a few iterations comparable to recent fast simulation methods that do not converge. These properties make it suitable for both offline accurate simulation and performant applications with expressive physics. We demonstrate the efficacy of our approach on a number of simulated examples.

Mixed Variational Finite Elements for Implicit Simulation of Deformables

Progressive Simulation for Cloth Quasistatics

Jiayi Eris Zhang, Jérémie Dumas, Yun (Raymond) Fei, Alec Jacobson, Doug L. James, Danny M. Kaufman

The trade-off between speed and fidelity in cloth simulation is a fundamental computational problem in computer graphics and computational design. Coarse cloth models provide the interactive performance required by designers, but they can not be simulated at higher resolutions (“up-resed”) without introducing simulation artifacts and/or unpredicted outcomes, such as different folds, wrinkles and drapes. But how can a coarse simulation predict the result of an unconstrained, high-resolution simulation that has not yet been run? We propose Progressive Cloth Simulation (PCS), a new forward simulation method for efficient preview of cloth quasistatics on exceedingly coarse triangle meshes with consistent and progressive improvement over a hierarchy of increasingly higher-resolution models. PCS provides an efficient coarse previewing simulation method that predicts the coarse-scale folds and wrinkles that will be generated by a corresponding converged, high-fidelity C-IPC simulation of the cloth drape’s equilibrium. For each preview PCS can generate an increasing-resolution sequence of consistent models that progress towards this converged solution. This successive improvement can then be interrupted at any point, for example, whenever design parameters are updated. PCS then ensures feasibility at all resolutions, so that predicted solutions remain intersection-free and capture the complex folding and buckling behaviors of frictionally contacting cloth.

Progressive Simulation for Cloth Quasistatics

Fast Stabilization of Inducible Magnet Simulation

Seung-wook Kim, JungHyun Han

This paper presents a novel method for simulating inducible rigid magnets efficiently and stably. In the proposed method, inducible magnets are magnetized by a modified magnetization dynamics, so that the magnetic equilibrium can be obtained in a computationally efficient manner. Furthermore, our model of magnetic forces takes magnetization change into account to produce stable motions of inducible magnets. The experiments show that the proposed method enables a large-scale simulation involving a huge number of inducible magnets.

Fast Stabilization of Inducible Magnet Simulation