DiffFR: Differentiable SPH-based Fluid-Rigid Coupling for Rigid Body Control

Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo Ren, Ligang Liu

Differentiable physics simulation has shown its efficacy in inverse design
problems. Given the pervasiveness of the diverse interactions between fluids and solids in life, a differentiable simulator for the inverse design of the motion of rigid objects in two-way fluid-rigid coupling is also demanded. There are two main challenges to develop a differentiable two-way fluid-solid coupling simulator for rigid body control tasks: the ubiquitous, discontinuous contacts in fluid-solid interactions, and the high computational cost of gradient formulation due to the large number of degrees of freedom (DoF) of fluid dynamics. In this work, we propose a novel differentiable SPH-based two-way fluid-rigid coupling simulator to address these challenges. Our purpose is to provide a differentiable simulator for SPH which incorporates a unified representation for both fluids and solids using particles. However, naively differentiating the forward simulation of the particle system encounters gradient explosion issues. We investigate the instability in differentiating the SPH-based fluid-rigid coupling simulator and present a feasible gradient computation scheme to address its differentiability. In addition, we also propose an efficient method to compute the gradient of fluid-rigid coupling without incurring the high computational cost of differentiating the entire high-DoF fluid system. We show the efficacy, scalability, and extensibility of our method in various challenging rigid body control tasks with diverse fluid-rigid interactions and multi-rigid contacts, achieving up to an order of magnitude speedup in optimization compared to baseline methods in experiments.

DiffFR: Differentiable SPH-based Fluid-Rigid Coupling for Rigid Body Control

Capturing Animation-Ready Isotropic Materials Using Systematic Poking

Huanyu Chen, Danyong Zhao, Jernej Barbič

Capturing material properties of real-world elastic solids is both challenging and highly relevant to many applications in computer graphics, robotics and related fields. We give a non-intrusive, in-situ and inexpensive approach to measure the nonlinear elastic energy density function of man-made materials and biological tissues. We poke the elastic object with 3d-printed rigid cylinders of known radii, and use a precision force meter to record the contact force as a function of the indentation depth, which we measure using a force meter stand, or a novel unconstrained laser setup. We model the 3D elastic solid using the Finite Element Method (FEM), and elastic energy using a compressible Valanis-Landel material that generalizes Neo-Hookean materials by permitting arbitrary tensile behavior under large deformations. We then use optimization to fit the nonlinear isotropic elastic energy so that the FEM contact forces and indentations match their measured real-world counterparts. Because we use carefully designed cubic splines, our materials are accurate in a large range of stretches and robust to inversions, and are therefore “animation-ready” for computer graphics applications. We demonstrate how to exploit radial symmetry to convert the 3D elastostatic contact problem to the mathematically equivalent 2D problem, which vastly accelerates optimization. We also greatly improve the theory and robustness of stretch-based elastic materials, by giving a simple and elegant formula to compute the tangent stiffness matrix, with rigorous proofs and singularity handling. We also contribute the observation that volume compressibility can be estimated by poking with rigid cylinders of different radii, which avoids optical cameras and greatly simplifies experiments. We validate our method by performing full 3D simulations using the optimized materials and confirming that they match real-world forces, indentations and real deformed 3D shapes. We also validate it using a “Shore 00” durometer, a standard device for measuring material hardness.

Capturing Animation-Ready Isotropic Materials Using Systematic Poking

Second-Order Finite Elements for Deformable Surfaces

Qiqin Le, Yitong Deng, Jiamu Bu, Bo Zhu, Tao Du

We present a computational framework for simulating deformable surfaces with second-order triangular finite elements. Our method develops numerical schemes for discretizing stretching, shearing, and bending energies of deformable surfaces in a second-order finite-element setting. In particular, we introduce a novel discretization scheme for approximating mean curvatures on a curved triangle mesh. Our framework also integrates a virtual-node finite-element scheme that supports two-way coupling between cut-cell rods without expensive remeshing. We compare our approach with traditional simulation methods using linear and higher-order finite elements and demonstrate its advantages in several challenging settings, such as low-resolution meshes, anisotropic triangulation, and stiff materials. Finally, we showcase several applications of our framework in cloth simulation, mixed Origami and Kirigami, and biologically-inspired soft wing simulation.

Second-Order Finite Elements for Deformable Surfaces

Fluid Simulation on Neural Flow Maps

Yitong Deng, Hong-Xing Yu, Diyang Zhang, Jiajun Wu, Bo Zhu

We introduce Neural Flow Maps, a novel simulation method bridging the emerging paradigm of implicit neural representations with fluid simulation based on the theory of flow maps, to achieve state-of-the-art simulation of inviscid fluid phenomena. We devise a novel hybrid neural field representation, Spatially Sparse Neural Fields (SSNF), which fuses small neural networks with a pyramid of overlapping, multi-resolution, and spatially sparse grids, to compactly represent long-term spatiotemporal velocity fields at high accuracy. With this neural velocity buffer in hand, we compute long-term, bidirectional flow maps and their Jacobians in a mechanistically symmetric manner, to facilitate drastic accuracy improvement over existing solutions. These long-range, bidirectional flow maps enable high advection accuracy with low dissipation, which in turn facilitates high-fidelity incompressible flow simulations that manifest intricate vortical structures. We demonstrate the efficacy of our neural fluid simulation in a variety of challenging simulation scenarios, including leapfrogging vortices, colliding vortices, vortex reconnections, as well as vortex generation from moving obstacles and density differences. Our examples show increased performance over existing methods in terms of energy conservation, visual complexity, adherence to experimental observations, and preservation of detailed vortical structures.

Fluid Simulation on Neural Flow Maps

Kirchhoff-Love Shells with Arbitrary Hyperelastic Materials

Jiahao Wen, Jernej Barbič

Kirchhoff-Love shells are commonly used in many branches of engineering, including in computer graphics, but have so far been simulated only under limited nonlinear material options. We derive the Kirchhoff-Love thin-shell mechanical energy for an arbitrary 3D volumetric hyperelastic material, including isotropic materials, anisotropic materials, and materials whereby the energy includes both even and odd powers of the principal stretches. We do this by starting with any 3D hyperelastic material, and then analytically computing the corresponding thin-shell energy limit. This explicitly identifies and separates in-plane stretching and bending terms, and avoids numerical quadrature. Thus, in-plane stretching and bending are shown to originate from one and the same process (volumetric elasticity of thin objects), as opposed to from two separate processes as done traditionally in cloth simulation. Because we can simulate materials that include both even and odd powers of stretches, we can accommodate standard mesh distortion energies previously employed for 3D solid simulations, such as Symmetric ARAP and Co-rotational materials. We relate the terms of our energy to those of prior work on Kirchhoff-Love thin-shells in computer graphics that assumed small in-plane stretches, and demonstrate the visual difference due to the presence of our exact stretching and bending terms. Furthermore, our formulation allows us to categorize all distinct hyperelastic Kirchhoff-Love thin-shell energies. Specifically, we prove that for Kirchhoff-Love thin-shells, the space of all hyperelastic materials collapses to two-dimensional hyperelastic materials. This observation enables us to create an interface for the design of thin-shell Kirchhoff-Love mechanical energies, which in turn enables us to create thin-shell materials that exhibit arbitrary stiffness profiles under large deformations.

Kirchhoff-Love Shells with Arbitrary Hyperelastic Materials

Neural Stress Fields for Reduced-order Elastoplasticity and Fracture

Zeshun Zong, Xuan Li, Minchen Li, Maurizio M. Chiaramonte, Wojciech Matusik, Eitan Grinspun, Kevin Carlberg, Chenfanfu Jiang, Peter Yichen Chen

We propose a hybrid neural network and physics framework for reduced-order modeling of elastoplasticity and fracture. State-of-the-art scientific computing models like the Material Point Method (MPM) faithfully simulate large-deformation elastoplasticity and fracture mechanics. However, their long runtime and large memory consumption render them unsuitable for applications constrained by computation time and memory usage, e.g., virtual reality. To overcome these barriers, we propose a reduced-order framework. Our key innovation is training a low-dimensional manifold for the Kirchhoff stress field via an implicit neural representation. This low-dimensional neural stress field (NSF) enables efficient evaluations of stress values and, correspondingly, internal forces at arbitrary spatial locations. In addition, we also train neural deformation and affine fields to build low-dimensional manifolds for the deformation and affine momentum fields. These neural stress, deformation, and affine fields share the same low-dimensional latent space, which uniquely embeds the high-dimensional simulation state. After training, we run new simulations by evolving in this single latent space, which drastically reduces the computation time and memory consumption. Our general continuum-mechanics-based reduced-order framework is applicable to any phenomena governed by the elasto-dynamics equation. To showcase the versatility of our framework, we simulate a wide range of material behaviors, including elastica, sand, metal, non-Newtonian fluids, fracture, contact, and collision. We demonstrate dimension reduction by up to 100,000× and time savings by up to 10×.

Neural Stress Fields for Reduced-order Elastoplasticity and Fracture

Power Plastics: A Hybrid Lagrangian/Eulerian Solver for Mesoscale Inelastic Flows

Ziyin Qu, Minchen Li, Yin Yang, Chenfanfu Jiang, Fernando de Goes

We present a novel hybrid Lagrangian/Eulerian method for simulating inelastic flows that generates high-quality particle distributions with adaptive volumes. At its core, our approach integrates an updated Lagrangian time discretization of continuum mechanics with the Power Particle-In-Cell geometric representation of deformable materials. As a result, we obtain material points described by optimized density kernels that precisely track the varying particle volumes both spatially and temporally. For efficient CFL-rate simulations, we also propose an implicit time integration for our system using a non-linear Gauss-Seidel solver inspired by X-PBD, viewing Eulerian nodal velocities as primal variables. We demonstrate the versatility of our method with simulations of mesoscale bubbles, sands, liquid, and foams.

Power Plastics: A Hybrid Lagrangian/Eulerian Solver for Mesoscale Inelastic Flows

A Physically-inspired Approach to the Simulation of Plant Wilting

F. Maggioli, J. Klein, T. Hädrich, E. Rodolà, W. Pałubicki, S. Pirk, D. L. Michels.

Plants are among the most complex objects to be modeled in computer graphics. While a large body of work is concerned with structural modeling and the dynamic reaction to external forces, our work focuses on the dynamic deformation caused by plant internal wilting processes. To this end, we motivate the simulation of water transport inside the plant which is a key driver of the wilting process. We then map the change of water content in individual plant parts to branch stiffness values and obtain the wilted plant shape through a position based dynamics simulation. We show, that our approach can recreated measured wilting processes and does so with a higher fidelity than approaches ignoring the internal water flow. Realistic plant wilting is not only important in a computer graphics context but can also aid the development of machine learning algorithms in agricultural applications through the generation of synthetic training data.

A Physically-inspired Approach to the Simulation of Plant Wilting

Real-time Height-field Simulation of Sand and Water Mixtures

Haozhe Su, Siyu Zhang, Zherong Pan, Mridul Aanjaneya, Xifeng Gao, Kui Wu

We propose a height-field-based real-time simulation method for sand and water mixtures. Inspired by the shallow-water assumption, our approach extends the governing equations to handle two-phase flows of sand and water using height fields. Our depth-integrated governing equations can model the elastoplastic behavior of sand, as well as sand-water-mixing phenomena such as friction, diffusion, saturation, and momentum exchange. We further propose an operator-splitting time integrator that is both GPU-friendly and stable under moderate time step sizes. We have evaluated our method on a set of benchmark scenarios involving large bodies of heterogeneous materials, where our GPU-based algorithm runs at real-time frame rates. Our method achieves a desirable trade-off between fidelity and performance, bringing an unprecedentedly immersive experience for real-time applications.

Real-time Height-field Simulation of Sand and Water Mixtures

High-Order Moment-Encoded Kinetic Simulation of Turbulent Flows

Wei Li, Tongtong Wang, Zherong Pan, Xifeng Gao, Kui Wu, Mathieu Desbrun

Kinetic solvers for incompressible fluid simulation were designed to run efficiently on massively parallel architectures such as GPUs. While these lattice Boltzmann solvers have recently proven much faster and more accurate than the macroscopic Navier-Stokes-based solvers traditionally used in graphics, it systematically comes at the price of a very large memory requirement: a mesoscopic discretization of statistical mechanics requires over an order of magnitude more variables per grid node than most fluid solvers in graphics. In order to open up kinetic simulation to gaming and simulation software packages on commodity hardware, we propose a High-Order Moment-Encoded Lattice-Boltzmann-Method solver which we coined HOME-LBM, requiring only the storage of a few moments per grid node, with little to no loss of accuracy in the typical simulation scenarios encountered in graphics. We show that our lightweight and lightspeed fluid solver requires three times less memory and runs ten times faster than state-of-the-art kinetic solvers, for a nearly-identical visual output.

High-Order Moment-Encoded Kinetic Simulation of Turbulent Flows