Physically-based analytical erosion for fast terrain generation

Petros Tzathas, Boris Gailleton, Philippe Steer, Guillaume Cordonnier Terrain generation methods have long been divided between procedural and physically-based. Procedural methods build upon the fast evaluation of a mathematical function but suffer from a lack of geological consistency, while physically-based simulation enforces this consistency at the cost of thousands of iterations unraveling the history of […]

Neural Garment Dynamics via Manifold-Aware Transformers

Peizhuo Li, Tuanfeng Y. Wang, Timur Levent Kesdogan, Duygu Ceylan, Olga Sorkine-Hornung Data driven and learning based solutions for modeling dynamic garments have significantly advanced, especially in the context of digital humans. However, existing approaches often focus on modeling garments with respect to a fixed parametric human body model and are limited to garment geometries […]

Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows

Xingyu Ye, Xiaokun Wang, Yanrui Xu, Jirí Kosinka, Alexandru C. Telea, Lihua You, Jian Jun Zhang, Jian Chang For vortex particle methods relying on SPH-based simulations, the direct approach of iterating all fluid particles to capture velocity from vorticity can lead to a significant computational overhead during the Biot-Savart summation process. To address this challenge, […]

The Impulse Particle-In-Cell Method

Sergio Sancho, Jingwei Tang, Christopher Batty, Vinicius Azevedo An ongoing challenge in fluid animation is the faithful preservation of vortical details, which impacts the visual depiction of flows. We propose the Impulse Particle-In-Cell (IPIC) method, a novel extension of the popular Affine Particle-In-Cell (APIC) method that makes use of the impulse gauge formulation of the […]

Eurographics 2024

Neural Collision Fields for Triangle Primitives

Ryan S. Zesch, Vismay Modi, Shinjiro Sueda, David I.W. Levin We present neural collision fields as an alternative to contact point sampling in physics simulations. Our approach is built on top of a novel smoothed integral formulation for the contact surface patches between two triangle meshes. By reformulating collisions as an integral, we avoid issues […]

Non-Newtonian ViRheometry via Similarity Analysis

Mitsuki Hamamichi, Kentaro Nagasawa, Masato Okada, Ryohei Seto, Yonghao Yue We estimate the three Herschel–Bulkley parameters (yield stress, power-law index, and consistency parameter) for shear-dependent fluid-like materials possibly with large-scale inclusions, for which rheometers may fail to provide a useful measurement. We perform experiments using the unknown material for dam-break (or column collapse) setups and […]

Subspace Mixed Finite Elements for Real-Time Heterogeneous Elastodynamics

Otman Benchekroun, Ty Trusty, Eitan Grinspun, Danny M. Kaufman, David I.W. Levin Real-time elastodynamic solvers are well-suited for the rapid simulation of homogeneous elastic materials, with high-rates generally enabled by aggressive early termination of timestep solves. Unfortunately, the introduction of strong domain heterogeneities can make these solvers slow to converge. Stopping the solve short creates […]

ViCMA: Visual Control of Multibody Animations

Doug L. James, David I.W. Levin Motion control of large-scale, multibody physics animations with contact is difficult. Existing approaches, such as those based on optimization, are computationally daunting, and, as the number of interacting objects increases, can fail to find satisfactory solutions. We present a new, complementary method for the visual control of multibody animations […]

Real-Time Reconstruction of Fluid Flow under Unknown Disturbance

Kinfung Chu, Jiawei Huang, Hidemasa Takan, Yoshifumi Kitamura We present a framework that captures sparse Lagrangian flow information from a volume of real liquid and reconstructs its detailed kinematic information in real time. Our framework can perform flow reconstruction even when the liquid is disturbed by an object of unknown movement and shape. Through a […]