A Neural Network Model for Efficient Musculoskeletal-Driven Skin Deformation

Yushan Han, Yizhou Chen, Carmichael Ong, Jingyu Chen, Jennifer Hicks, Joseph Teran We present a comprehensive neural network to model the deformation of human soft tissues including muscle, tendon, fat and skin. Our approach provides kinematic and active correctives to linear blend skinning [Magnenat-Thalmann et al. 1989] that enhance the realism of soft tissue deformation […]

Efficient Position-Based Deformable Colon Modeling for Endoscopic Procedures Simulation

Marcelo Martins, Lucas Morais, Rafael Torchelsen, Luciana Nedel, Anderson Maciel Current endoscopy simulators oversimplify navigation and interaction within tubular anatomical structures to maintain interactive frame rates, neglecting the intricate dynamics of permanent contact between the organ and the medical tool. Traditional algorithms fail to represent the complexities of long, slender, deformable tools like endoscopes and […]

Simplicits: Mesh-Free, Geometry-Agnostic, Elastic Simulation

Vismay Modi, Nicholas Sharp, Or Perel, Shinjiro Sueda, David I. W. Levin The proliferation of 3D representations, from explicit meshes to implicit neural fields and more, motivates the need for simulators agnostic to representation. We present a data-, mesh-, and grid-free solution for elastic simulation for any object in any geometric representation undergoing large, nonlinear […]

Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity

Yizhou Chen, Yushan Han, Jingyu Chen, Zhan Zhang, Alex Mcadams, Joseph Teran Position based dynamics [Müller et al. 2007] is a powerful technique for simulating a variety of materials. Its primary strength is its robustness when run with limited computational budget. Even though PBD is based on the projection of static constraints, it does not […]

ContourCraft: Learning to Resolve Intersections in Neural Multi-Garment Simulations

Artur Grigorev, Giorgio Becherini, Michael Black, Otmar Hilliges, Bernhard Thomaszewski Learning-based approaches to cloth simulation have started to show their potential in recent years. However, handling collisions and intersections in neural simulations remains a largely unsolved problem. In this work, we present ContourCraft, a learning-based solution for handling intersections in neural cloth simulations. Unlike conventional […]

Fluid Control with Laplacian Eigenfunctions

Yixin Chen, David I.W. Levin, Timothy R. Langlois Physics-based fluid control has long been a challenging problem in balancing efficiency and accuracy. We introduce a novel physicsbased fluid control pipeline using Laplacian Eigenfluids. Utilizing the adjoint method with our provided analytical gradient expressions, the derivative computation of the control problem is efficient and easy to […]

A Vortex Particle-on-Mesh Method for Soap Film Simulation

Ningxiao Tao, Liangwang Ruan , Yitong Deng, Bo Zhu, Bin Wang, Baoquan Chen This paper introduces a novel physically-based vortex fluid model for films, aimed at accurately simulating cascading vortical structures on deforming thin films. Central to our approach is a novel mechanism decomposing the film’s tangential velocity into circulation and dilatation components. These components […]

Proxy Asset Generation for Cloth Simulation in Games

Zhongtian Zheng, Tongtong Wang, Qijia Feng, Zherong Pan, Xifeng Gao, Kui Wu Simulating high-resolution cloth poses computational challenges in real-time applications. In the gaming industry, the proxy mesh technique offers an alternative, simulating a simplified low-resolution cloth geometry, proxy mesh. This proxy mesh’s dynamics drive the detailed high-resolution geometry, visual mesh, through Linear Blended Skinning […]

Real-time Physically Guided Hair Interpolation

Jerry Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao, Cem Yuksel, Kui Wu Strand-based hair simulations have recently become increasingly popular for a range of real-time applications. However, accurately simulating the full number of hair strands remains challenging. A commonly employed technique involves simulating a subset of guide hairs to capture the overall behavior of the […]

Super-Resolution Cloth Animation with Spatial and Temporal Coherence

Jiawang Yu, Zhendong Wang Creating super-resolution cloth animations, which refine coarse cloth meshes with fine wrinkle details, faces challenges in preserving spatial consistency and temporal coherence across frames. In this paper, we introduce a general framework to address these issues, leveraging two core modules. The first module interleaves a simulator and a corrector. The simulator […]