gDist: Efficient Distance Computation between 3D Meshes on GPU

Peng Fang, Wei Wang, Ruofeng Tong, Hailong Li, Min Tang Computing maximum/minimum distances between 3D meshes is crucial for various applications, i.e., robotics, CAD, VR/AR, etc. In this work, we introduce a highly parallel algorithm (gDist) optimized for Graphics Processing Units (GPUs), which is capable of computing the distance between two meshes with over 15 […]

Polar Interpolants for Thin-Shell Microstructure Homogenization

Antoine Chan-Lock, Miguel A. Otaduy This paper introduces a new formulation for material homogenization of thin-shell microstructures. It addresses important challenges that limit the quality of previous approaches: methods that fit the energy response neglect visual impact, methods that fit the stress response are not conservative, and all of them are limited to a low-dimensional […]

Tencers: Tension-Constrained Elastic Rods

Liliane-Joy Yana Dandy, Michele Vidulis, Yingying Ren, Mark Pauly We study ensembles of elastic rods that are tensioned by a small set of inextensible cables. The cables induce forces that deform the initially straight, but flexible rods into 3D space curves at equilibrium. Rods can be open or closed, knotted, and arranged in arbitrary topologies. […]

Optimized shock-protecting microstructures

Zizhou Huang, Daniele Panozzo, Denis Zorin Mechanical shock is a common occurrence in various settings, there are two different scenarios for shock protection: catastrophic protection (e.g. car collisions and falls) and routine protection (e.g. shoe soles and mattresses). The former protects against one-time events, the latter against periodic shocks and loads. Common shock absorbers based […]

Computational Biomimetics of Winged Seeds

Qiqin Le, Jiamu Bu, Yanke Qu, Bo Zhu, Tao Du We develop a computational pipeline to facilitate the biomimetic design of winged seeds. Our approach leverages 3D scans of natural winged seeds to construct a bio-inspired design space by interpolating them with geodesic coordinates in the 3D diffeomorphism group. We formulate aerodynamic design tasks with […]

XPBI: Position-Based Dynamics with Smoothing Kernels Handles Continuum Inelasticity

Chang Yu, Xuan Li, Lei Lan, Yin Yang, Chenfanfu Jiang PBD and its extension, XPBD, have been predominantly applied to compliant constrained elastodynamics, with their potential in finite strain (visco-) elastoplasticity remaining underexplored. XPBD is often perceived to stand in contrast to other meshless methods, such as the MPM. MPM is based on discretizing the […]

Barrier-Augmented Lagrangian for GPU-based Elastodynamic Contact

We propose a GPU-based iterative method for accelerated elastodynamic simulation with the log-barrier-based contact model. While Newton’s method is a conventional choice for solving the interior-point system, the presence of ill-conditioned log barriers often necessitates a direct solution at each linearized substep and costs substantial storage and computational overhead. Moreover, constraint sets that vary in […]

Efficient GPU Cloth Simulation with Non-distance Barriers and Subspace Reuse

Lei Lan, Zixuan Lu, Jingyi Long, Chun Yuan, Xuan Li, Xiaowei He, Huamin Wang, Chenfanfu Jiang, Yin Yang This paper pushes the performance of cloth simulation, making the simulation interactive even for high-resolution garment models while keeping every triangle untangled. The penetration-free guarantee is inspired by the interior point method, which converts the inequality constraints […]

Volumetric Homogenization for Knitwear Simulation

Chun Yuan, Haoyang Shi, Lei Lan, Yuxing Qiu, Cem Yuksel, Huamin Wang, Chenfanfu Jiang, Kui Wu, Yin Yang This paper presents volumetric homogenization, a spatially varying homogenization scheme for knitwear simulation. We are motivated by the observation that macro-scale fabric dynamics is strongly correlated with its underlying knitting patterns. Therefore, homogenization towards a single material […]

An Eulerian Vortex Method on Flow Maps

Sinan Wang, Yitong Deng, Molin Deng, Hong-Xing Yu, Junwei Zhou, Duowen Chen, Taku Komura, Jiajun Wu, Bo Zhu We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations for line […]