Solid Simulation with Oriented Particles

We propose a new fast and robust method to simulate various types of solid including rigid, plastic and soft bodies as well as one, two and three dimensional structures such as ropes, cloth and volumetric objects. The underlying idea is to use oriented particles that store rotation and spin, along with the usual linear attributes, […]

Data-Driven Elastic Models for Cloth: Modeling and Measurement

Cloth often has complicated nonlinear, anisotropic elastic behavior due to its woven pattern and fiber properties. However, most current cloth simulation techniques simply use linear and isotropic elastic models with manually selected stiffness parameters. Such simple simulations do not allow differentiating the behavior of distinct cloth materials such as silk or denim, and they cannot […]

Underwater Cloth Simulation with Fractional Derivatives

We introduce the use of fractional differentiation for simulating cloth de formations underwater. The proposed approach is able to achieve realistic underwater deformations without simulating the Eulerian body of water in which the cloth is immersed. Instead, we propose a particle-based cloth model where half-derivative viscoelastic elements are included for describing both the internal and […]

Unified Simulation of Elastic Rods, Shells, and Solids

We develop an accurate, unified treatment of elastica. Following the method of resultant-based formulation to its logical extreme, we derive a higher-order integration rule, or elaston, measuring stretching, shearing, bending, and twisting along any axis. The theory and accompanying implementation do not distinguish between forms of different dimension (solids, shells, rods), nor between manifold regions […]

Anisotropic Friction for Deformable Surfaces and Solids

This paper presents a method for simulating anisotropic friction for deforming surfaces and solids. Frictional contact is a complex phenomenon that fuels research in mechanical engineering, computational contact mechanics, composite material design and rigid body dynamics, to name just a few. Many real-world materials have anisotropic surface properties. As an example, most textile materials exhibit […]

Accurate Tangential Velocities for Solid-Fluid Coupling

We propose a novel method for obtaining more accurate tangential velocities for solid fluid coupling. Our method works for both rigid and deformable objects as well as both volumetric objects and thin shells. The fluid can be either one phase such as smoke or two phase such as water with a free surface. The coupling […]

Triangular Springs for Modeling Nonlinear Membranes

This paper provides a formal connexion between springs and continuum mechanics in the context of onedimensional and two-dimensional elasticity. In a first stage, the equivalence between tensile springs and the finite element discretization of stretching energy on planar curves is established. Furthermore, when considering a quadratic strain function of stretch, we introduce a new type […]

Continuum-based Strain Limiting

We present Continuum-based Strain Limiting (CSL) – a new method for limiting deformations in physically-based cloth simulations. Recent developments have led to methods which excel at simulating nearly inextensible materials, but the efficient simulation of general biphasic textiles and their anisotropic behavior remains challenging. Other approaches use softer materials and enforce limits on edge elongations, […]

Parallel Simulation of Inextensible Cloth

This paper presents an efficient simulation method for parallel cloth simulation. The presented method uses an impulse-based approach for the simulation. Cloth simulation has many application areas like computer animation, computer games or virtual reality. Simulation methods often make the assumption that cloth is an elastic material. In this way the simulation can be performed […]

A Geometric Deformation Model for Stable Cloth Simulation

We propose an adapted shape-matching approach for the efficient and robust simulation of clothing. A combination of two different cluster types is employed to account for high stretching and shearing, and low bending resistance. Due to the inherent handling of overshooting issues, the proposed shape-matching deformation model is robust. The proposed cluster types allow for […]