Parallel Multigrid for Nonlinear Cloth Simulation

Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, Huamin Wang Accurate high-resolution simulation of cloth is a highly desired computational tool in graphics applications. As single resolution simulation starts to reach the limit of computational power, we believe the future of cloth simulation is in multi-resolution simulation. In this paper, we explore nonlinearity, adaptive smoothing, […]

Inverse Elastic Shell Design with Contact and Friction

Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, Laurence Boissieux We propose an inverse strategy for modeling thin elastic shells physically, just from the observation of their geometry. Our algorithm takes as input an arbitrary target mesh, and interprets this configuration automatically as a stable equilibrium of a shell simulator under gravity and frictional contact […]

Physical Simulation of Environmentally Induced Thin Shell Deformation

Hsiao-yu Chen, Arnav Sastry, Wim M. van Rees, Etienne Vouga We present a physically accurate low-order elastic shell model that incorporates active material response to dynamically changing stimuli such as heat, moisture, and growth. Our continuous formulation of the geometrically non-linear elastic energy derives from the principles of differential geometry, and as such naturally incorporates […]

A Material Point Method for Thin Shells with Frictional Contact

Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, Joseph Teran We present a novel method for simulation of thin shells with frictional contact using a combination of the Material Point Method (MPM) and subdivision finite elements. The shell kinematics are assumed to follow a continuum shell model which is decomposed into a Kirchhoff-Love […]

Eulerian-on-Lagrangian Cloth Simulation

Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, Shinjiro Sueda We resolve the long-standing problem of simulating the contact-mediated interaction of cloth and sharp geometric features by introducing an Eulerian-on-Lagrangian (EOL) approach to cloth simulation. Unlike traditional Lagrangian approaches to cloth simulation, our EOL approach permits bending exactly at and sliding over sharp edges, […]

Inequality Cloth

Ning Jin, Wenlong Lu, Zhenglin Geng, Ronald Fedkiw As has been noted and discussed by various authors, numerical simulations of deformable bodies often adversely suffer from so-called “locking” artifacts. We illustrate that the “locking” of out-of-plane bending motion that results from even an edge-spring-only cloth simulation can be quite severe, noting that the typical remedy […]

Anisotropic Elastoplasticity for Cloth, Knit and Hair Frictional Contact

Chenfanfu Jiang, Theodore Gast, Joseph Teran The typical elastic surface or curve simulation method takes a Lagrangian approach and consists of three components: time integration, collision detection and collision response. The Lagrangian view is beneficial because it naturally allows for tracking of the codimensional manifold, however collision must then be detected and resolved separately. Eulerian […]

Interactive Paper Tearing

Camille Schreck, Damien Rohmer, Stefanie Hahmann We propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical-based method to compute the trajectory of tears while procedurally synthesizing high resolution […]

Non-smooth developable geometry for interactively animating paper crumpling

Camille Schreck, Damien Rohmer, Stefanie Hahmann, Marie-Paule Cani, Shuo Jin, Charlie Wang, Jean-Francois Bloch We present the first method to animate sheets of paper at interactive rates, while automatically generating a plausible set of sharp features when the sheet is crumpled. The key idea is to interleave standard physically-based simulation steps with procedural generation of […]

Real-time Hair Mesh Simulation

Kui Wu, Cem Yuksel We present a robust real-time hair simulation method using hair meshes. Leveraging existing simulation models for sheet-based cloth, we introduce a volumetric force model for incorporating hair interactions inside the hair mesh volume. We also introduce a position correction method that minimizes the local deformation of the hair mesh due to […]