Velocity-Based Shock Propagation for Multibody Dynamics Animation

Multibody dynamics are used in interactive and real-time applications, ranging from computer games to virtual prototyping, and engineering. All these areas strive towards faster and larger scale simulations. Particularly challenging are large-scale simulations with highly organized and structured stacking. We present a stable, robust, and versatile method for multibody dynamics simulation. Novel contributions include a […]

Impulse-Based Dynamic Simulation in Linear Time

This paper describes an impulse-based dynamic simulation method for articulated bodies which has a linear time complexity. Existing linear-time methods are either based on a reduced-coordinate formulation or on Lagrange multipliers. The impulse-based simulation has advantages over these well-known methods. Unlike reduced-coordinate methods, it handles nonholonomic constraints like velocity-dependent ones and is very easy to […]

Many Worlds Browsing for Control of Multibody Dynamics

Animation techniques for controlling passive simulation are commonly based on an optimization paradigm: the user provides goals a priori, and sophisticated numerical methods minimize a cost function that represents these goals. Unfortunately, for multibody systems with discontinuous contact events these optimization problems can be highly nontrivial to solve, and many-hour offline optimizations, unintuitive parameters, and […]

Hybrid Simulation of Deformable Solids

Although mesh-based methods are efficient for simulating simple hyperelasticity, maintaining and adapting a mesh-based representation is less appealing in more complex scenarios, e.g. collision, plasticity and fracture. Thus, meshless or point-based methods have enjoyed recent popularity due to their added flexibility in dealing with these situations. Our approach begins with an initial mesh that is […]

Continuous Collision Detection for Articulated Models using Taylor Models and Temporal Culling

“We present a fast continuous collision detection (CCD) algorithm for articulated models using Taylor models and temporal culling. Our algorithm is a generalization of conservative advancement (CA) from convex models [Mirtich 1996] to articulated models with non-convex links. Given the initial and final configurations of a moving articulated model, our algorithm creates a continuous motion […]

A Fast Variational Framework for Accurate Solid-Fluid Coupling

“Physical simulation has emerged as a compelling animation technique, yet current approaches to coupling simulations of fluids and solids with irregular boundary geometry are inefficient or cannot handle some relevant scenarios robustly. We propose a new variational approach which allows robust and accurate solution on relatively coarse Cartesian grids, allowing possibly orders of magnitude faster […]

Fracturing Rigid Materials

“We propose a novel approach to fracturing (and denting) brittle materials. To avoid the computational burden imposed by the stringent time step restrictions of explicit methods or with solving nonlinear systems of equations for implicit methods, we treat the material as a fully rigid body in the limit of infinite stiffness. In addition to a […]