Parallel Particles (P^2): A Parallel Position Based Approach for Fast and Stable Simulation of Granular Materials

Daniel Holz Granular materials exhibit a large number of diverse physical phenomena which makes their numerical simulation challenging. When set in motion they flow almost like a fluid, while they can present high shear strength when at rest. Those macroscopic effects result from the material’s microstructure: a particle skeleton with interlocking particles which stick to […]

Efficient Denting and Bending of Rigid Bodies

Saket Patkar, Mridul Aanjaneya, Aric Bartle, Minjae Lee, Ronald Fedkiw We present a novel method for the efficient denting and bending of rigid bodies without the need for expensive finite element simulations. Denting is achieved by deforming the triangulated surface of the target body based on a dent map computed on-the-fly from the projectile body using a […]

Adaptive Tetrahedral Meshes for Brittle Fracture Simulation

Dan Koschier, Sebastian Lipponer, Jan Bender We present a method for the adaptive simulation of brittle fracture of solid objects based on a novel reversible tetrahedral mesh refinement scheme. The refinement scheme preserves the quality of the input mesh to a large extent, it is solely based on topological operations, and does not alter the […]

Unified Particle Physics for Real-Time Applications

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim We present a unified dynamics framework for real-time visual effects. Using particles connected by constraints as our fundamental building block allows us to treat contact and collisions in a unified manner, and we show how this representation is flexible enough to model gases, liquids, deformable solids, […]

Inverse-Foley Animation: Synchronizing rigid-body motions to sound

Timothy R. Langlois and Doug L. James In this paper, we introduce Inverse-Foley Animation, a technique for optimizing rigid-body animations so that contact events are synchronized with input sound events. A precomputed database of randomly sampled rigid-body contact events is used to build a contact-event graph, which can be searched to determine a plausible sequence of […]

Implicit Multibody Penalty-based Distributed Contact

Hongyi Xu, Yili Zhao, and Jernej Barbic The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, […]

Efficient Enforcement of Hard Articulation Constraints in the Presence of Closed Loops and Contacts

Robin Tomcin, Dominik Sibbing, Leif Kobbelt In rigid body simulation, one must distinguish between contacts (so-called unilateral constraints) and articulations (bilateral constraints). For contacts and friction, iterative solution methods have proven most useful for interactive applications, often in combination with Shock-Propagation in cases with strong interactions between contacts (such as stacks), prioritizing performance and plausibility […]

Enhancements to Model-Reduced Fluid Simulation

Dan Gerszewski, Ladislav Kavan, Peter-Pike Sloan, Adam W. Bargteil We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. We handle two-way solid-fluid coupling in a […]

Object-Centric Parallel Rigid Body Simulation with Timewarp

John Koenig, Ioannis Karamouzas, Stephen J. Guy We present an object-centric formulation for parallel rigid body simulation that supports variable length integration time steps through rollbacks. We combine our object-centric simulation framework with a novel spatiotemporal data structure to reduce global synchronization and achieve interactive, real-time simulations which scale across many CPU cores. Additionally, we provide proofs that both our […]

Simulation and Control of Skeleton-Driven Soft Body Characters

Libin Liu, KangKang Yin, Bin Wang, Baining Guo In this paper we present a physics-based framework for simulation and control of human-like skeleton-driven soft body characters. We couple the skeleton dynamics and the soft body dynamics to enable two-way interactions between the skeleton, the skin geometry, and the environment. We propose a novel pose-based plasticity model that extends […]