Reconstructing Personalized Anatomical Models for Physics-based Body Animation

Petr Kadlecek, Alexandru-Eugen Ichim, Tiantian Liu, Ladislav Kavan, Jaroslav Krivanek We present a method to create personalized anatomical models ready for physics-based animation, using only on a set of surface 3D scans. We start by building a template anatomical model of an average male which supports deformations due to both 1) subject-specific variations: shapes and sizes of bones, muscles, […]

SMASH: Physics-guided Reconstruction of Collisions from Videos

Aron Monszpart, Nils Thuerey, Niloy J. Mitra Collision sequences are commonly used in games and entertainment to add drama and excitement. Authoring even two body collisions in the real world can be difficult, as one has to get timing and the object trajectories to be correctly synchronized. After tedious trial-and-error iterations, when objects can actually be made […]

Hierarchical hp-Adaptive Signed Distance Fields

Dan Koschier, Crispin Deul, Jan Bender In this paper we propose a novel method to construct hierarchical $hp$-adaptive Signed Distance Fields (SDFs). We discretize the signed distance function of an input mesh using piecewise polynomials on an axis-aligned hexahedral grid. Besides spatial refinement based on octree subdivision to refine the cell size (h), we hierarchically increase […]

Example-Based Plastic Deformation of Rigid Bodies

Ben Jones, Nils Thuerey, Tamar Shinar, Adam W. Bargteil Physics-based animation is often used to animate scenes containing destruction of near-rigid, man-made materials. For these applications, the most important visual features are plastic deformation and fracture. Methods based on continuum mechanics model these materials as elastoplastic, and must perform expensive elasticity computations even though elastic […]

Fast approximations for boundary element based brittle fracture simulation

David Hahn, Chris Wojtan We present a boundary element based method for fast simulation of brittle fracture. By introducing simplifying assumptions that allow us to quickly estimate stress intensities and opening displacements during crack propagation, we build a fracture algorithm where the cost of each time step scales linearly with the length of the crack-front. […]

A Semi-Implicit Material Point Method for the Continuum Simulation of Granular Materials

Gilles Daviet, Florence Bertails-Descoubes We present a new continuum-based method for the realistic simulation of large-scale free-flowing granular materials. We derive a compact model for the rheology of the material, which accounts for the exact nonsmooth Drucker-Prager yield criterion combined with a varying volume fraction. Thanks to a semi-implicit timestepping scheme and a careful spatial […]

Quadratic Contact Energy Model for Multi-Impact Simulation

Tianxiang Zhang, Sheng Li, Guoping Wang, Dinesh Manocha, Hanqiu Sun Simultaneous multi-impact simulation is a challenging problem in modeling collision for rigid bodies. There are several physical criteria for an ideal model of rigid body collision, but existing models generally fail to meet one or more of them. In order to reveal the inner process […]

Stable Constrained Dynamics

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, Francois Faure We present a unification of the two main approaches to simulate deformable solids, namely elasticity and constraints. Elasticity accurately handles soft to moderately stiff objects, but becomes numerically hard as stiffness increases. Constraints efficiently handle high stiffness, but when integrated in time they can suffer from instabilities […]

High-Resolution Brittle Fracture Simulation with Boundary Elements

David Hahn, Chris Wojtan We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress […]

Simulating Rigid Body Fracture with Surface Meshes

Yufeng Zhu, Robert Bridson, Chen Greif We present a new brittle fracture simulation method based on a boundary integral formulation of elasticity and recent explicit surface mesh evolution algorithms. Unlike prior physically-based simulations in graphics, this avoids the need for volumetric sampling and calculations, which aren’t reflected in the rendered output. We represent each quasi-rigid […]