Feedback Control of Cumuliform Cloud Formation Based on Computational Fluid Dynamics

Clouds play an important role for creating realistic images of outdoor scenes. In order to generate realistic clouds, many methods have been developed for modeling and animating clouds. One of the most effective approaches for synthesizing realistic clouds is to simulate cloud formation processes based on the atmospheric fluid dynamics. Although this approach can create […]

Low Viscosity Flow Simulations for Animation

We present a combination of techniques to simulate turbulent fluid flows in 3D. Flow in a complex domain is modeled using a regular rectilinear grid with a finite-difference solution to the incompressible Navier-Stokes equations. We propose the use of the QUICK advection algorithm over a globally high resolution grid. To calculate pressure over the grid, […]

Density Contrast SPH Interfaces

To simulate multiple fluids realistically many important interaction effects have to be captured accurately. Smoothed Particle Hydrodynamics (SPH) has shown to be a simple, yet flexible method to cope with many fluid simulation problems in a robust way. Unfortunately, the results obtained when using SPH to simulate miscible fluids are severely affected, especially if density […]

Two-Way Coupling of Fluids to Rigid and Deformable Solids and Shells

We propose a novel solid/fluid coupling method that treats the coupled system in a fully implicit manner making it stable for arbitrary time steps, large density ratios, etc. In contrast to previous work in computer graphics, we derive our method using a simple back-of-the-envelope approach which lumps the solid and fluid momenta together, and which […]

Evolving Sub-Grid Turbulence for Smoke Animation

We introduce a simple turbulence model for smoke animation, qualitatively capturing the transport, diffusion, and spectral cascade of turbulent energy unresolved on a typical simulation grid. We track the mean kinetic energy per octave of turbulence in each grid cell, and a novel “net rotation” variable for modeling the self-advection of turbulent eddies. These additions […]

Accurate Viscous Free Surfaces for Buckling, Coiling and Rotating Liquids

We present a fully implicit Eulerian technique for simulating free surface viscous liquids which eliminates artifacts in previous approaches, efficiently supports variable viscosity, and allows the simulation of more compelling viscous behaviour than previously achieved in graphics. Our method exploits a variational principle which automatically enforces the complex boundary condition on the shear stress at […]

Visual Simulation of Shockwaves

We present an efficient method for visual simulations of shock phenomena in compressible, inviscid fluids. Our algorithm is derived from one class of the finite volume method especially designed for capturing shock propagation, but offers improved efficiency through physically-based simplification and adaptation for graphical rendering. Our technique is well suited for parallel implementation on multicore […]

Wavelet Turbulence for Fluid Simulation

We present a novel wavelet method for the simulation of fluids at high spatial resolution. The algorithm enables large- and small-scale detail to be edited separately, allowing high-resolution detail to be added as a post-processing step. Instead of solving the Navier-Stokes equations over a highly refined mesh, we use the wavelet decomposition of a low-resolution […]

Bubbles Alive

We propose a hybrid method for simulating multiphase fluids such as bubbly water. The appearance of subgrid visual details is improved by incorporating a new bubble model based on smoothed particle hydrodynamics (SPH) into an Eulerian grid-based simulation that handles background flows of large bodies of water and air. To overcome the difficulty in simulating […]

Porous Flow in Particle-Based Fluid Simulations

This paper presents the simulation of fluid flowing through a porous deformable material. We introduce the physical principles governing porous flow, expressed by the Law of Darcy, into the Smoothed Particle Hydrodynamics (SPH) framework for simulating fluids and deformable objects. Contrary to previous SPH approaches, we simulate porous flow at a macroscopic scale, making abstraction […]