Filament based smoke with vortex shedding and variational reconnection

Simulating fluids based on vortex filaments is highly attractive for the creation of special effects because it gives artists full control over the simulation using familiar tools like curve editors or the scripted generation of new vortex filaments over time. Because filaments offer a very compact description of fluid flow, real time applications like games […]

A Practical Simulation of Dispersed Bubble Flow

In this paper, we propose a simple and efficient framework for simulating dispersed bubble flow. Instead of modeling the complex hydrodynamics of numerous small bubbles explicitly, our method approximates the average motion of these bubbles using a continuum multiphase solver. Then, the subgrid interactions among bubbles are computed using our new stochastic solver. Using the […]

A Multiscale Approach to Mesh-based Surface Tension

We present an approach to simulate flows driven by surface tension based on triangle meshes. Our method consists of two simulation layers: the first layer is an Eulerian method for simulating surface tension forces that is free from typical strict time step constraints. The second simulation layer is a Lagrangian finite element method that simulates […]

Matching Fluid Simulation Elements to Surface Geometry and Topology

We introduce an Eulerian liquid simulation framework based on the Voronoi diagram of a potentially unorganized collection of pressure samples. Constructing the simulation mesh in this way allows us to place samples anywhere in the computational domain; we exploit this by choosing samples that accurately capture the geometry and topology of the liquid surface. When […]

Fluid Simulation with Articulated Bodies

We present an algorithm for creating realistic animations of characters that are swimming through fluids. Our approach combines dynamic simulation with data-driven kinematic motions (motion capture data) to produce realistic animation in a fluid. The interaction of the articulated body with the fluid is performed by incorporating joint constraints with rigid animation and by extending […]

Accurate Tangential Velocities for Solid-Fluid Coupling

We propose a novel method for obtaining more accurate tangential velocities for solid fluid coupling. Our method works for both rigid and deformable objects as well as both volumetric objects and thin shells. The fluid can be either one phase such as smoke or two phase such as water with a free surface. The coupling […]

A Point-based Method for Animating Elastoplastic Solids

In this paper we describe a point-based approach for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. The deformation gradient is computed for each particle by finding the affine transformation that best approximates the motion of neighboring particles over a single timestep. […]

A Point-based Method for Animating Incompressible Flow

In this paper, we present a point-based method for animating incompressible flow. The advection term is handled by moving the sample points through the flow in a Lagrangian fashion. However, unlike most previous approaches, the pressure term is handled by performing a projection onto a divergence-free field. To perform the pressure projection, we compute a […]

Simulation of Two-Phase Flow with Sub-Scale Droplets and Bubble Effects

We present a new Eulerian-Lagrangian method for physics-based simulation of fluid flow, which includes automatic generation of sub-scale spray and bubbles. The Marker Level Set method is used to provide a simple geometric criterion for free marker generation. A filtering method, inspired from Weber number thresholding, further controls the free marker generation (in a physics-based […]

Real-Time Fluid Simulation Using Discrete Sine/Cosine Transforms

Recent advances in fluid simulations have yielded exceptionally realistic imagery. However, most algorithms have computational requirements that are prohibitive for real-time simulations. Using Fourier based solutions mitigates this issue, although due to wraparound, boundary conditions are not naturally available, leading to inconsistencies near the boundary. We show that slip boundary conditions can be imposed by […]