Creating and Preserving Vortical Details in SPH Fluid

We present a new method to create and preserve the turbulent details generated around moving objects in SPH fluid. In our approach, a high-resolution overlapping grid is bounded to each object and translates with the object. The turbulence formation is modeled by resolving the local flow around objects using a hybrid SPH-FLIP method. Then these […]

Creature Control in a Fluid Environment

In this paper, we propose a method designed to allow creatures to actively respond to a fluid environment. We explore various objective functions in order to determine ways to direct the behavior of our creatures. Our proposed method works in conjunction with generalized body forces as well as both one-way and two-way coupled fluid forces. […]

Reconstructing Surfaces of Particle-Based Fluids Using Anisotropic Kernels

In this paper we present a novel surface reconstruction method for particle-based fluid simulators such as Smoothed Particle Hydrodynamics. In particle-based simulations, fluid surfaces are usually defined as a level set of an implicit function. We formulate the implicit function as a sum of anisotropic smoothing kernels, and the direction of anisotropy at a particle […]

Practical Animation of Compressible Flow for Shockwaves and Related Phenomena

We propose a practical approach to integrating shock wave dynamics into traditional smoke simulations. Previous methods either simplify away the compressible component of the flow and are unable to capture shock fronts or use a prohibitively expensive explicit method that limits the time step of the simulation long after the relevant shock waves and rarefactions […]

Real-Time Simulation of Large Bodies of Water with Small Scale Details

We present a hybrid water simulation method that combines grid based and particles based approaches. Our specialized shallow water solver can handle arbitrary underlying terrain slopes, arbitrary water depth and supports wet-dry regions tracking. To treat open water scenes we introduce a method for handling non-reflecting boundary conditions. Regions of liquid that cannot be represented by the height […]

A Novel Algorithm for Incompressible Flow Using Only A Coarse Grid Projection

Large scale fluid simulation can be difficult using existing techniques due to the high computational cost of using large grids. We present a novel technique for simulating detailed fluids quickly. Our technique coarsens the Eulerian fluid grid during the pressure solve, allowing for a fast implicit update but still maintaining the resolution obtained with a […]

A parallel multigrid Poisson solver for fluids simulation on large grids

We present a highly efficient numerical solver for the Poisson equation on irregular voxelized domains supporting an arbitrary mix of Neumann and Dirichlet boundary conditions. Our approach employs a multigrid cycle as a preconditioner for the conjugate gradient method, which enables the use of a lightweight, purely geometric multigrid scheme while drastically improving convergence and […]

Discrete Viscous Threads

We present a continuum-based discrete model for thin threads of viscous fluid by drawing upon the Rayleigh analogy to elastic rods, demonstrating canonical coiling, folding, and breakup in dynamic simulations. Our derivation emphasizes space-time symmetry, which sheds light on the role of time-parallel transport in eliminating — without approximation — all but an O(n) band […]

Enhancing Fluid Animation with Adaptive, Controllable, and Intermittent Turbulence

This paper proposes a new scheme for enhancing fluid animation with controllable turbulence. An existing fluid simulation from ordinary fluid solvers is fluctuated by turbulent variation modeled as a random process of forcing. The variation is precomputed as a sequence of solenoidal noise vector fields directly in the spectral domain, which is fast and easy […]

Underwater Cloth Simulation with Fractional Derivatives

We introduce the use of fractional differentiation for simulating cloth de formations underwater. The proposed approach is able to achieve realistic underwater deformations without simulating the Eulerian body of water in which the cloth is immersed. Instead, we propose a particle-based cloth model where half-derivative viscoelastic elements are included for describing both the internal and […]