Hybrid Simulation of Deformable Solids

Although mesh-based methods are efficient for simulating simple hyperelasticity, maintaining and adapting a mesh-based representation is less appealing in more complex scenarios, e.g. collision, plasticity and fracture. Thus, meshless or point-based methods have enjoyed recent popularity due to their added flexibility in dealing with these situations. Our approach begins with an initial mesh that is […]

Arbitrary Cutting of Deformable Tetrahedralized Objects

We propose a flexible geometric algorithm for placing arbitrary cracks and incisions on tetrahedralized deformable objects. Although techniques based on remeshing can also accommodate arbitrary fracture patterns, this flexibility comes at the risk of creating sliver elements leading to models that are inappropriate for subsequent simulation. Furthermore, interactive applications such as virtual surgery simulation require […]

Adaptive Deformations with Fast Tight Bounds

“Simulation of deformations and collision detection are two highly intertwined problems that are often treated separately. This is especially true in existing elegant adaptive simulation techniques, where standard collision detection algorithms cannot leverage the adaptively selected degrees of freedom.We propose a seamless integration of multi-grid algorithms and collision detection that identifies boundary conditions while inherently […]

A Finite Element Method on Convex Polyhedra

 “We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on […]

FastLSM: Fast Lattice Shape Matching for Robust Real-Time Deformation

“We introduce a simple technique that enables robust approximation of volumetric, large-deformation dynamics for real-time or large-scale offline simulations. We propose Lattice Shape Matching, an extension of deformable shape matching to regular lattices with embedded geometry; lattice vertices are smoothed by convolution of rigid shape matching operators on local lattice regions, with the effective mechanical […]

Volume Conserving Finite Element Simulations of Deformable Models

“We propose a numerical method for modeling highly deformable nonlinear incompressible solids that conserves the volume locally near each node in a finite element mesh. Our method works with arbitrary constitutive models, is applicable to both passive and active materials (e.g. muscles), and works with simple tetrahedra without the need for multiple quadrature points or […]

A Finite Element Method for Animating Large Viscoplastic Flow

“We present an extension to Lagrangian finite element methods to allow for large plastic deformations of solid materials. These behaviors are seen in such everyday materials as shampoo, dough, and clay as well as in fantastic gooey and blobby creatures in special effects scenes. To account for plastic deformation, we explicitly update the linear basis […]