Energetically Consistent Invertible Elasticity

Alexey Stomakhin, Russell Howes, Craig Schroeder, Joseph Teran We provide a smooth extension of arbitrary isotropic hyperelastic energy density functions to inverted confi gurations. This extension is designed to improve robustness for elasticity simulations with extremely large deformations and is analogous to the extension given to the first Piola-Kircho ff stress in [ITF04]. We show that our energy-based approach […]

Topology Adaptive Interface Tracking Using the Deformable Simplicial Complex

Marek Misztal, Andreas Baerentzen We present a novel, topology-adaptive method for deformable interface tracking, called the Deformable Simplicial Complex (DSC). In the DSC method, the interface is represented explicitly as a piecewise linear curve (in 2D) or surface (in 3D) which is a part of a discretization (triangulation/tetrahedralization) of the space, such that the interface […]

Energy-Based Self-Collision Culling for Arbitrary Mesh Deformations

Changxi Zheng, Doug James In this paper, we accelerate self-collision detection (SCD) for a deforming triangle mesh by exploiting the idea that a mesh cannot self collide unless it deforms enough. Unlike prior work on subspace self-collision culling which is restricted to low-rank deformation subspaces, our energy-based approach supports arbitrary mesh deformations while still being […]

Interactive Space-Time Control of Deformable Objects

Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, Konrad Polthier Creating motions of objects or characters that are physically plausible and follow an animator’s intent is a key task in computer animation. The spacetime constraints paradigm is a valuable approach to this problem, but it suffers from high computational costs. Based on spacetime constraints, we propose […]

Adaptive Image-Based Intersection Volume

Bin Wang, Francois Faure, Dinesh Pai A method for image-based contact detection and modeling, with guaranteed precision on the intersection volume, is presented. Unlike previous image-based methods, our method optimizes a non-uniform ray sampling resolution and allows precise control of the volume error. By cumulatively projecting all mesh edges into a generalized 2D texture, we […]

Fast Simulation of Skeleton-Driven Deformable Body Characters

Junggon Kim, Nancy Pollard We propose a fast physically based simulation system for skeleton-driven deformable body characters. Our system can generate realistic motions of self-propelled deformable body characters by considering the two-way interactions among the skeleton, the deformable body, and the environment in the dynamic simulation. It can also compute the passive jiggling behavior of […]

Soft Body Locomotion

Jie Tan, Greg Turk, Karen Liu We present a physically-based system to simulate and control the locomotion of soft body characters without skeletons. We use the finite element method to simulate the deformation of the soft body, and we instrument a character with muscle fibers to allow it to actively control its shape. To perform […]

Interactive Editing of Deformable Simulations

Jernej Barbic, Funshing Sin, Eitan Grinspun We present an interactive animation editor for complex deformable object animations. Given an existing animation, the artist directly manipulates the deformable body at any time frame, and the surrounding animation immediately adjusts in response. The automatic adjustments are designed to respect physics, preserve detail in both the input motion […]

Stress Relief: Improving Structural Strength of 3D Printable Objects

Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, Radomir Mech 3D printing is a rapidly maturing area that has shown great progress over the past couple of years. It is now possible to produce 3D printed objects with exceptionally high fidelity and precision. However, while the quality of 3D printing has gone up, both the time to print and […]

PhD Thesis

Efficient and scalable simulation of solids and fluids – Jonathan Su, Stanford