Scalable Partitioning for Parallel Position Based Dynamics

Marco Fratarcangeli, Fabio Pellacini We introduce a practical partitioning technique designed for parallelizing Position Based Dynamics, and exploit- ing the ubiquitous multi-core processors present in current commodity GPUs. The input is a set of particles whose dynamics is influenced by spatial constraints. In the initialization phase, we build a graph in which each node corresponds […]

Yarn-Level Simulation of Woven Cloth

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, Miguel A. Otaduy The large-scale mechanical behavior of woven cloth is determined by the mechanical properties of the yarns, the weave pattern, and frictional contact between yarns. Using standard simulation methods for elastic rod models and yarn-yarn contact handling, the simulation of woven garments at realistic yarn densities is […]

Interactive Material Design Using Model Reduction

Hongyi Xu, Yijing Li, Yong Chen, Jernej Barbic We demonstrate an interactive method to create heterogeneous continuous deformable materials on complex three-dimensional meshes. The user specifies displacements and internal elastic forces at a chosen set of mesh vertices. Our system then rapidly solves an optimization problem to compute a corresponding heterogeneous spatial distribution of material properties, using the Finite […]

Realistic Biomechanical Simulation and Control of Human Swimming

Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, Demetri Terzopoulos We address the challenging problem of controlling a complex biomechanical model of the human body to synthesize realistic swimming animation. Our human model includes all of the relevant articular bones and muscles, including 103 bones (comprising 163 articular degrees of freedom) plus a total of 823 muscle actuators embedded in a […]

Strain Limiting for Clustered Shape Matching

Adam W. Bargteil, Ben Jones In this paper, we advocate explicit symplectic Euler integration and strain limiting in a shape matching simulation framework. The resulting approach resembles not only previous work on shape matching and strain limiting, but also the recently popular position-based dynamics.However, unlike this previous work, our approach reduces to explicit integration under small strains, […]

Multi-layer skin simulation with adaptive constraints

Pengbo Li, Paul Kry We present an approach for physics based simulation of the wrinkling of multi-layer skin with heterogeneous material properties. Each layer of skin is simulated with an adaptive mesh, with the different layers coupled via constraints that only permit wrinkle deformation at wavelengths that match the physical properties of the multi-layer model. […]

Windy Trees: Computing Stress Response for Developmental Tree Models

Sören Pirk, Till Niese, Torsten Hädrich, Bedrich Benes, Oliver Deussen We present a novel method for combining developmental tree models with turbulent wind fields. The tree geometry is created from internal growth functions of the developmental model and its response to external stress is induced by a physically-plausible wind field that is simulated by Smoothed […]

Coupling Hair with Smoothed Particle Hydrodynamics Fluids

Wei-Chin Lin We present a two-way coupling technique for simulating the complex interaction between hair and fluids. In our approach, the motion of hair and fluids is simulated by evaluating the hydrodynamic forces among them based on boundary handling techniques used in SPH (Smoothed Particle Hydrodynamics) fluids. When hair makes contact with fluids, water absorption […]

Parallel Particles (P^2): A Parallel Position Based Approach for Fast and Stable Simulation of Granular Materials

Daniel Holz Granular materials exhibit a large number of diverse physical phenomena which makes their numerical simulation challenging. When set in motion they flow almost like a fluid, while they can present high shear strength when at rest. Those macroscopic effects result from the material’s microstructure: a particle skeleton with interlocking particles which stick to […]

Animation of Deformable Bodies with Quadratic Bézier Finite Elements

Adam W. Bargteil, Elaine Cohen In this paper, we investigate the use of quadratic finite elements for graphical animation of deformable bodies. We consider both integrating quadratic elements with conventional linear elements to achieve a computationally efficient adaptive-degree simulation framework as well as wholly quadratic elements for the simulation of non-linear rest shapes. In both […]