Fast Quadrangular Mass-Spring Systems using Red-Black Ordering

Pontus Pall, Oskar Nylèn, Marco Fratarcangeli We introduce a practical iterative solver for mass-spring systems which can be trivially mapped to massively parallel architectures, in particular GPUs.We employ our solver for the interactive animation of virtual cloth and show that it is computationally fast, robust and scalable, making it suitable for real-time graphics applications. Under […]

Laplacian Damping for Projective Dynamics

Jing Li, Tiantian Liu, Ladislav Kavan Damping is an important ingredient in physics-based simulation of deformable objects. Recent work introduced new fast simulation methods such as Position Based Dynamics and Projective Dynamics. Explicit velocity damping methods currently used in conjunction with Position Based Dynamics or Projective Dynamics are simple and fast, but have some limitations. […]

Reformulating Hyperelastic Materials with Peridynamic Modeling

Liyou Xu, Xiaowei He, Wei Chen, Sheng Li, and Guoping Wang Peridynamics is a formulation of the classical elastic theory that is targeted at simulating deformable objects with discontinuities, especially fractures. Till now, there are few studies that have been focused on how to model general hyperelastic materials with peridynamics. In this paper, we target […]

Accurate dissipative forces in optimization integrators

George E. Brown, Matthew Overby, Zahra Forootaninia, Rahul Narain We propose a method for accurately simulating dissipative forces in deformable bodies when using optimization-based integrators. We represent such forces using dissipation functions which may be nonlinear in both positions and velocities, enabling us to model a range of dissipative effects including Coulomb friction, Rayleigh damping, […]

Analytic Eigensystems for Isotropic Distortion Energies

Breannan Smith, Fernando de Goes, Theodore Kim Many strategies exist for optimizing non-linear distortion energies in geometry and physics applications, but devising an approach that achieves the convergence promised by Newton-type methods remains challenging. In order to guarantee the positive semi-definiteness required by these methods, a numerical eigendecomposition or approximate regularization is usually needed. In […]

I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation

Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha We present an incremental collision handling algorithm for GPU-based interactive cloth simulation. Our approach exploits the spatial and temporal coherence between successive iterations of an optimization-based solver for collision response computation. We present an incremental continuous collision detection algorithm that keeps track of deforming […]

Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media

Yonghao Yue*, Breannan Smith*, Peter Yichen Chen*, Maytee Chantharayukhonthorn*, Ken Kamrin, Eitan Grinspun We propose a technique to simulate granular materials that exploits the dual strengths of discrete and continuum treatments. Discrete element simulations provide unmatched levels of detail and generality, but prove excessively costly when applied to large scale systems. Continuum approaches are computationally […]

GPU Optimization of Material Point Methods

Ming Gao*, Xinlei Wang*, Kui Wu*, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, Chenfanfu Jiang The Material Point Method (MPM) has been shown to facilitate effective simulations of physically complex and topologically challenging materials, with a wealth of emerging applications in computational engineering and visual computing. Borne out of the extreme importance of regularity, MPM is […]

Methodology for Assessing Mesh-Based Contact Point Methods

Kenny Erleben Computation of contact points is a critical sub-component of physics-based animation. The success and correctness of simulation results are very sensitive to the quality of the contact points. Hence, quality plays a critical role when comparing methods, and this is highly relevant for simulating objects with sharp edges. The importance of contact point […]

The Human Touch: Measuring Contact with Real Human Soft Tissues

D. K. Pai, A. Rothwell, P. Wyder-Hodge, A. Wick, Y. Fan, E. Larionov, D. Harrison, D. R. Neog, and C. Shing Simulating how the human body deforms in contact with clothing, wearables, and other objects is of central importance to many fields. However, the tissue material properties needed to accurately simulate real human bodies had […]