VolCCD: Fast Continuous Collision Culling Between Deforming Volume Meshes

Min Tang, Dinesh Manocha, Sung-Eui Yoon, Peng Du, Jae-Pil Heo, Ruofeng Tong We present a novel culling algorithm to perform fast and robust continuous collision detection between deforming volume meshes. This includes a continuous separating axis test that can conservatively check whether two volume meshes overlap during a given time interval. Moreover, we present efficient […]

Asynchronous Integration with Phantom Meshes

David Harmon, Qingnan Zhou, Denis Zorin Asynchronous variational integration of layered contact models provides a framework for robust collision handling, correct physical behavior, and guaranteed eventual resolution of even the most difficult contact problems. Yet, even for low-contact scenarios, this approach is significantly slower compared to its less robust alternatives — often due to handling […]

Eulerian Solid Simulation with Contact

David I. W. Levin, Joshua Litven, Garrett L. Jones, Shinjiro Sueda, Dinesh K. Pai Simulating viscoelastic solids undergoing large, nonlinear deformations in close contact is challenging. In addition to inter-object contact, methods relying on Lagrangian discretizations must handle degenerate cases by explicitly remeshing or resampling the object. Eulerian methods, which discretize space itself, provide an […]

SPH Granular Flow with Friction and Cohesion

Ivan Alduan, Miguel Otaduy Combining mechanical properties of solids and fluids, granular materials pose important challenges for the design of algorithms for realistic animation. In this paper, we present a simulation algorithm based on smoothed particle hydrodynamics (SPH) that succeeds in modeling important features of the behavior of granular materials. These features are unilateral incompressibility, […]

Robust Real-Time Deformation of Incompressible Surface Meshes

Raphael Diziol, Jan Bender, Daniel Bayer We introduce an efficient technique for robustly simulating incompressible objects with thousands of elements in real-time. Instead of considering a tetrahedral model, commonly used to simulate volumetric bodies, we simply use their surfaces. Not requiring hundreds or even thousands of elements in the interior of the object enables us […]

Efficient Elasticity for Character Skinning with Contact and Collisions

We present a new algorithm for near-interactive simulation of skeleton driven, high resolution elasticity models. Our methodology is used for soft tissue deformation in character animation. The algorithm is based on a novel discretization of corotational elasticity over a hexahedral lattice. Within this framework we enforce positive definiteness of the stiffness matrix to allow efficient […]

Fast and Scalable CPU/GPU Collision Detection for Rigid and Deformable Surfaces

We present a new hybrid CPU/GPU collision detection technique for rigid and deformable objects based on spatial subdivision. Our approach efficiently exploits the massive computational capabilities of modern CPUs and GPUs commonly found in off-the-shelf computer systems. The algorithm is specifically tailored to be highly scalable on both the CPU and the GPU sides. We […]

Real-Time Collision Culling of a Million Bodies on Graphics Processing Units

We cull collisions between very large numbers of moving bodies using graphics processing units (GPUs). To perform massively parallel sweep-and-prune (SaP), we mitigate the great density of intervals along the axis of sweep by using principal component analysis to choose the best sweep direction, together with spatial subdivisions to further reduce the number of false […]

FASTCD: Fracturing-Aware Stable Collision Detection

We present a collision detection (CD) method for complex and large-scale fracturing models that have geometric and topological changes. We first propose a novel dual-cone culling method to improve the performance of CD, especially self-collision detection among fracturing models. Our dual-cone culling method has a small computational overhead and a conservative algorithm. Combined with bounding […]

Constraint Based Simulation of Adhesive Contact

Dynamics with contact are often formulated as a constrained optimization problem. This approach allows handling in an integrated manner both non-penetration and frictional constraints. Following developments in the computational mechanics field, we have designed an algorithm for adding the simulation of adhesive contact constraints in the context of state-of-the-art constraint-based contact solvers. We show that […]