I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation

Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha We present an incremental collision handling algorithm for GPU-based interactive cloth simulation. Our approach exploits the spatial and temporal coherence between successive iterations of an optimization-based solver for collision response computation. We present an incremental continuous collision detection algorithm that keeps track of deforming […]

Methodology for Assessing Mesh-Based Contact Point Methods

Kenny Erleben Computation of contact points is a critical sub-component of physics-based animation. The success and correctness of simulation results are very sensitive to the quality of the contact points. Hence, quality plays a critical role when comparing methods, and this is highly relevant for simulating objects with sharp edges. The importance of contact point […]

An Implicit Frictional Contact Solver for Adaptive Cloth Simulation

Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby, George Brown, Laurence Boissieux Cloth dynamics plays an important role in the visual appearance of moving characters. Properly accounting for contact and friction is of utmost importance to avoid cloth-body and cloth-cloth penetration and to capture typical folding and stick-slip behavior due to dry friction. […]

A Material Point Method for Thin Shells with Frictional Contact

Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, Joseph Teran We present a novel method for simulation of thin shells with frictional contact using a combination of the Material Point Method (MPM) and subdivision finite elements. The shell kinematics are assumed to follow a continuum shell model which is decomposed into a Kirchhoff-Love […]

Eulerian-on-Lagrangian Cloth Simulation

Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, Shinjiro Sueda We resolve the long-standing problem of simulating the contact-mediated interaction of cloth and sharp geometric features by introducing an Eulerian-on-Lagrangian (EOL) approach to cloth simulation. Unlike traditional Lagrangian approaches to cloth simulation, our EOL approach permits bending exactly at and sliding over sharp edges, […]

A Moving Least Squares Material Point Method with Displacement Discontinuity and Two-Way Rigid Body Coupling

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, Chenfanfu Jiang In this paper, we introduce the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM naturally leads to the formulation of Affine Particle-In-Cell (APIC) [Jiang et al. 2015] and Polynomial Particle-In-Cell [Fu et al. 2017] in a way that is consistent with […]

PSCC: Parallel Self-Collision Culling with Spatial Hashing on GPUs

Min Tang, Zhongyuan Liu,, Ruofeng Tong, Dinesh Manocha We present a GPU-based self-collision culling method (PSCC) based on a combination of normal cone culling and spatial hashing techniques. We first describe a normal cone test front (NCTF) based parallel algorithm that maps well to GPU architectures. We use sprouting and shrinking operators to maintain compact […]

Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring

X. L. Wang, M. Tang, D. Manocha, Ruo-Feng Tong Bounding volume hierarchy (BVH) has been widely adopted as the acceleration structure in broad-phase collision detection. Previous state-of-the-art BVH-based collision detection approaches exploited the spatio-temporal coherence of simulations by maintaining a bounding volume test tree (BVTT) front. A major drawback of these algorithms is that large […]

An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials

Ming Gao, Andre Pradhana Tampubulon, Chenfanfu Jiang, Eftychios Sifakis We present an adaptive Generalized Interpolation Material Point (GIMP) method for simulating elastoplastic materials. Our approach allows adaptive refining and coarsening of different regions of the material, leading to an efficient MPM solver that concentrates most of the computation resources in specific regions of interest. We propose […]

Physically-Based Droplet Interaction

Richard Jones, Richard Southern In this paper we present a physically-based model for simulating realistic interactions between liquid droplets in an efficient manner. Our particle-based system recreates the coalescence, separation and fragmentation interactions that occur between colliding liquid droplets and allows systems of droplets to be meaningfully repre- sented by an equivalent number of simulated […]