ContourCraft: Learning to Resolve Intersections in Neural Multi-Garment Simulations

Artur Grigorev, Giorgio Becherini, Michael Black, Otmar Hilliges, Bernhard Thomaszewski

Learning-based approaches to cloth simulation have started to show their potential in recent years. However, handling collisions and intersections in neural simulations remains a largely unsolved problem. In this work, we present ContourCraft, a learning-based solution for handling intersections in neural cloth simulations. Unlike conventional approaches that critically rely on intersection-free inputs, ContourCraft robustly recovers from intersections introduced through missed collisions, self-penetrating bodies, or errors in manually designed multi-layer outfits. The technical core of ContourCraft is a novel intersection contour loss that penalizes interpenetrations and encourages rapid resolution thereof. We integrate our intersection loss with a collision-avoiding repulsion objective into a neural cloth simulation method based on graph neural networks (GNNs). We demonstrate our method’s ability across a challenging set of diverse multi-layer outfits under dynamic human motions. Our extensive analysis indicates that ContourCraft significantly improves collision handling for learned simulation and produces visually compelling results.

ContourCraft: Learning to Resolve Intersections in Neural Multi-Garment Simulations

(Comments are closed)