Real-time Dynamic Wrinkling of Coarse Animated Cloth

Russell Gillette, Craig Peters, Nicholas Vining, Essex Edwards, Alla Sheffer Dynamic folds and wrinkles are an important visual cue for creating believably dressed characters in virtual environments. Adding these fine details to real-time cloth visualization is challenging, as the low-quality cloth used for real-time applications often has no reference shape, an extremely low triangle count, […]

A Material Point Method for Viscoelastic Fluids, Foams, and Sponges

Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin, Joseph Teran, Pirouz Kavehpour We present a new Material Point Method (MPM) for simulating viscoelastic fluids, foams and sponges. We design our discretization from the upper convected derivative terms in the evolution of the left Cauchy-Green elastic strain tensor. We combine this with an Oldroyd-B […]

Efficient Simulation of Knitted Cloth using Persistent Contacts

Gabriel Cirio, Jorge Lopez-Moreno, Miguel Otaduy Knitted cloth is made of yarns that are stitched in regular patterns, and its macroscopic behavior is dictated by the contact interactions between such yarns. We propose an efficient representation of knitted cloth at the yarn level that treats yarn-yarn contacts as persistent, thereby avoiding expensive contact handling altogether. […]

OmniAD: Data-driven Omni-directional Aerodynamics

Tobias Martin, Nobuyuki Umetani, Bernd Bickel This paper introduces “OmniAD,” a novel data-driven pipeline to model and acquire the aerodynamics of three-dimensional rigid objects. Traditionally, aerodynamics are examined through elaborate wind tunnel experiments or expensive fluid dynamics computations, and are only measured for a small number of discrete wind directions. OmniAD allows the evaluation of aerodynamic forces, […]