Multiple-Fluid SPH Simulation Using a Mixture Model

Bo Reng, Chenfeng Li, Xiao Yan, Ming C. Lin, Javier Bonet, Shi-Min Hu

This paper presents a versatile and robust SPH simulation approach for multiple-fluid flows. The spatial distribution of different phases or components is modeled using the volume fraction representation, the dynamics of multiple-fluid flows is captured by using an improved mixture model, and a stable and accurate SPH formulation is rigorously derived to resolve the complex transport and transformation processes encountered in multiple-fluid flows. The new approach can capture a wide range of realworld multiple-fluid phenomena, including mixing/unmixing of miscible and immiscible fluids, diffusion effect and chemical reaction etc. Moreover, the new multiple-fluid SPH scheme can be readily integrated into existing state-of-the-art SPH simulators, and the multiple-fluid simulation is easy to set up. Various examples are presented to demonstrate the effectiveness of our approach.

Multiple-Fluid SPH Simulation Using a Mixture Model

(Comments are closed)