Enrichment Textures for Detailed Cutting of Shells

We present a method for simulating highly detailed cutting and fracturing of thin shells using low-resolution simulation meshes. Instead of refining or remeshing the underlying simulation domain to resolve complex cut paths, we adapt the extended finite element method (XFEM) and enrich our approximation by custom designed basis functions, while keeping the simulation mesh unchanged. The enrichment functions are stored in enrichment textures, which allows for fracture and cutting discontinuities at a resolution much finer than the underlying mesh, similar to image textures for increased visual resolution. Furthermore, we propose harmonic enrichment functions to handle multiple, intersecting, arbitrarily shaped, progressive cuts per element in a simple and unified framework. Our underlying shell simulation is based on discontinuous Galerkin (DG) FEM, which relaxes the restrictive requirement of C1 continuous basis functions and thus allows for simpler, C0 continuous XFEM enrichment functions.

Enrichment Textures for Detailed Cutting of Shells

(Comments are closed)